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1.0 Summary of Findings 
 
The purpose of this study was to investigate and summarize the development projects 
currently being carried out by organizations around the world on new technologies for 
production of titanium metal.  Primary focus was on emerging technologies for reduction 
of titanium bearing oxides to titanium metal.  Sixteen such reduction technology projects 
were identified and are described.  While no claim is made that this list contains all such 
projects, it is believed to include a large majority of such efforts.  Several additional 
technologies are reviewed which have recently been reported, and which may be of 
interest to vehicular applications.  An initial section of this report provides a brief 
summary of the conventional technologies utilized currently for Ti production.  This is 
included to provide a reference point for consideration of the implications of the 
emerging technologies for cost reduction.  The emphasis on cost reduction technologies 
is on those with the potential to reduce the cost of final titanium products by very 
significant amounts on the order of 30%, 50% or more.  This current study does not 
address the ongoing continuous improvement and innovation in present production 
technology which are expected to provide improvements on the order of 5% to perhaps 
15%. 
 
The ultimate commercial product of some of the emerging reduction technologies 
cannot be defined at this time.  Some may be utilized to produce more than one product 
form; for example, a process may be optimized for production of either solid Ti or a 
granular or powder product.  Nevertheless, the processes may be broadly grouped into 
those that will produce solid ingot, billet or slab, and those that will produce some form 
of sponge, granular or powder product.  Figure 1 shows a general sequence of process 
steps for conventional production of titanium mill products using Vacuum Arc Melting.  
The Figure also shows the range of these process steps which would be replaced by 
various alternative technologies.  The number of process steps replaced by the 
emerging technologies varies among the approaches, and in some cases has not been 
finally determined. 
 
Production of a sponge product to be utilized as a replacement for Kroll sponge does 
not appear to have potential for large cost reduction.  The processes which may provide 
sponge all use some form of halide electrolyte or metal reductant which would need to 
be separated from the product sponge.  In addition, if the process does not utilize TiCl4 
for raw material purification, then another such process must be utilized.  Any cost 
reduction from the current Na reduction of TiCl4 could not be expected to yield final 
product cost reduction of more than 5 – 10%.  Such a process could replace only up to 
a few steps in the conventional process route depicted in Figure 1. 
 
Cold hearth melting technologies are described briefly in the Conventional Processing 
section of this report.  These technologies are providing needed incremental 
improvement in the economics of production.  Figure 1 shows that they replace many of 
the steps in conventional VAR processing, although for some applications VAR must 
still be utilized for final melt.  In addition to fewer process steps, the quality of product 
may be improved when utilizing high scrap levels, which in itself is a cost reduction 
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measure.  Finally, these processes may be used to produce rectangular blooms or 
slabs, which require fewer hot working operations, with the accompanying cost savings. 
 

 
Fig. 1  Reduction in Process Steps By Emerging Reduction Technologies. 

 
The group of emerging processes labeled “Direct Slab” in Figure 1 is those that either 
produces liquid, which can be cast into rectangular slab, or which directly produce solid 
slab.  Depending on the process, these may replace several of the initial steps in the 
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Kroll Process.  None of these processes are known to have round ingot as their target 
product, but are expected to produce rectangular bloom, billet or slab directly, in a 
single process sequence.  In common with cold hearth, these processes would not 
require repeat cycles of any process step.  The form of the final product will determine 
how far along the conventional process sequence these new technologies will provide 
replacement.  General concerns with this class of process are: the degree of chemical 
homogeneity which is provided; the ability to provide complex, multi-element alloys 
within the chemistry tolerance required; the surface condition produced by some 
processes without the need for extensive conditioning. 
 
The group of emerging technologies labeled “Direct Powder” in Figure 1 are those that 
have granules or powder as their target product.  Not depicted in this Figure are any 
process steps that are required to purify the powder and further process it into useable 
form.  This finished powder or granular material may be useable in several subsequent 
processes to produce final product.  Titanium powder metallurgy is a very small industry 
due to both the high present cost of quality powder, the need for specialized facilities 
and processes to handle the reactive powder, and to contamination by residuals of 
binder removal.  The new powder technologies can be expected to significantly lower 
powder cost, thus providing incentive to resolve the other issues.  Powder or granules 
may also be utilized as feedstock for a variety of compaction and sintering processes 
with the objective of providing mill products such as sheet, strip, plate, bar, wire and 
forging preform.  Very little work has been done, however, on utilization of powder for 
these downstream processes.  Use of mixed CP titanium and elemental alloy blends for 
production of complex alloys has been demonstrated.  The promise of a direct route to 
such finished products should provide incentive for development of these methods.  
Significant cost savings by replacement of a large number of process steps appears to 
be worth the effort.  General concerns with this class of process include:  the low level 
of experience in using powder to manufacture mill products; the reactivity of powder / 
granules during its use to make mill products. 
 
As mentioned, sixteen development projects for new oxide reduction processes have 
been identified.  Some are well known, while others have just been revealed.  Table 1 
lists these processes, the organization performing the development, and the general 
nature of the expected product.  In some cases considerable detail has been obtained, 
while little has been released on some efforts.  The Table presents the list in random 
order.  The details of the processes which have been released are provided in the 
report.  Some processes operate by reduction of a titanium halide.  Many utilize some 
form of electrochemical reduction while still others rely on metallochemical or 
metallothermic reduction.  References are provided in many cases for further study of 
the mechanisms.  Many of the projects are in the very early stage of development so 
that optimization and scale up are many years in the future.  Other efforts are reported 
to be either in the pilot stage or near to scale up.  No opinions are expressed as to the 
likelihood of success of any of these processes.  Sufficient insight has been gained, and 
progress demonstrated, however, to have confidence that some of the developments 
will succeed in commercialization. 
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No attempt was made to be as comprehensive in investigating other groups of emerging 
titanium technologies.  There are numerous efforts at developing new alloys with 
reduced cost through utilization of low cost master alloys.  Strong effort continues on 
development of titanium intermetallics.  Solid freeform fabrication of titanium is now 
being commercialized, especially for use to add stock to structures in order to reduce 
machining.  Titanium continues to find new applications in industrial, consumer and 
vehicular applications as well as potential new defense applications.  As the promise of 
significant cost reduction is realized through the emerging technologies discussed, as 
well as others to be disclosed, applications and substitution of titanium for other metals 
can be expected to increase. 

 
Table 1  Summary of Emerging Reduction Technologies 

Name / Organization Process Product(s) 
FFC / Cambridge Univ. 
/ Quinetiq / TIMET 

Electrolytic reduction of partially 
sintered TiO2 electrode in molten 
CaCl2 

Powder Block 

Armstrong / 
International Ti Powder 

Liquid Na reduction of TiCl4 vapor Powder 

MER Corp. Anode reduction of TiO2, transport 
through mixed halide electrolyte 
and deposition on cathode 

Powder, Flake or Solid 
Slab 

SRI International Fluidized bed reduction of Ti halide Powder, Granule 
BHP Billiton No details available NA 
Idaho Titanium 
Technologies 

Hydrogen reduction of TiCl4 
plasma 

Powder 

GTT s.r.l. (Ginatta) Electrolytic reduction of TiCl4 vapor 
dissolved in molten electrolyte 

Liquid Ti, either tapped 
or solidified as slab 

OS (Ono / Suzuki; 
Kyoto Univ.) 

Calciothermic reduction of TiO2 Powder / sponge 

Millenium Chemical No details available Powder 
MIR Chem I2 reduction of TiO2 in ”shaking 

reactor” 
Particles 

CSIR (S. Africa) H2 reduction of TiCl4 Sponge 
Quebec Fe & Ti (Rio 
Tinto) 

Electrolytic reduction of Ti slag Ti Liquid 

EMR / MSE (Univ. of 
Tokyo) 

Electrolytic cell between TiO2 and 
liquid Ca alloy reduces TiO2 

Highly porous Ti powder 
compact 

Preform Reduction Reduction of TiO2 reduction by Ca Ti powder compact 
Vartech Gaseous reduction of TiCl4 vapor Powder 
Idaho Research 
Foundation 

Mechanochemical Reduction of 
liquid TiCl4  

Powder 
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2.0 Introduction 
 
Titanium is the ninth most abundant element, comprising 0.6% of the earth’s crust.  It is 
also the fourth most abundant structural material after aluminum (8.1%), iron (5.1%) and 
magnesium (2.1%).  Of these four elements, only aluminum has a higher free energy for 
reduction of its oxide.  Nevertheless, 1997 US titanium production, including scrap 
recycle, was only 48,000 metric tons, vs. 138,000 metric tons of Mg, 7.2 million metric 
tons of Al, and 99 million metric tons of steel.  Inversely, prices ($/metric ton) for these 
metals in ’97 were $9,656 (Ti sponge), $3,460 (Mg), $1,440 (Al) and $625 (Steel). 
 
The reason for this discrepancy in pricing and production volume is primarily due to the 
high reactivity of titanium.  Titanium has a great affinity for oxygen, nitrogen, carbon and 
hydrogen.  Even though the free energy of formation of TiO2 is less than that of Al2O3, 
no smelting process similar to that used for aluminum has been successful. The Kroll 
process and subsequent purification operations used for the majority of titanium 
production is energy, material and capital intensive, so that the sponge produced 
currently sells for $3.50 – 4.00 per pound.  Since approximately half of titanium 
production is used in aerospace applications, and these are the most profitable 
applications, the requirements of this industry have dominated production technology.  
Stringent property requirements dictate very low levels of microstructural defects.  Melt 
processing in either vacuum or inert atmosphere is therefore required.  Double and 
even triple melting sequences are common.  Mill processing, such as conversion of 
ingot by hot rolling and forging can only be carried out in air, so that multiple 
conditioning steps (oxide and surface defect removal) are required.  Yield loss and the 
cost of these conditioning operations can contribute half of the cost of plate and bar 
products.  Final prices for titanium mill products consequently range from a low of ~$8/lb 
to $20/lb and sometimes much higher, depending on form, specification, quantity, alloy 
and the state of the aerospace economic cycle. 
 
Efforts to reduce the cost of titanium products have continued practically uninterrupted 
since the beginning of the industry.  Progress has been made in improving the efficiency 
of the conventional process route, and in development of some process alternatives.  
None of these efforts, however, have provided pricing approaching that of the 
competing materials.  In recent years, there has been an acceleration of the interest in 
alternative routes to titanium product.  Most of this effort is directed at alternatives to the 
use of ingots cast from double or triple vacuum arc remelted Kroll process sponge.   
Objectives include providing either lower cost billet / slab, or production of high quality 
powder at low cost.  Lower cost slab has the potential to reduce product cost by both 
reduction of the casting cost, and elimination of ingot breakdown steps.  Efforts to 
produce low cost powder may be viewed either as providing an alternative to sponge in 
the ingot/slab casting process, or to provide raw material for alternative routes to mill 
product and for conventional powder metallurgy. 
 
The objective of this report is to review the efforts to develop new technology for 
titanium production.  A summary of conventional technology is provided, along with 
description of some of the current improvement efforts.  Sixteen approaches to 
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reduction of titanium oxides to pure and alloyed Ti have been found.  These efforts are 
described in levels of detail which vary depending on the status of development, and the 
willingness of the developing organization to disclose information.  Reluctance on the 
part of many firms is understandable considering the value of the intellectual property 
being developed and the competitive nature of the industry.  Finally, some description is 
provided of technologies available or under development to convert the output of these 
new reduction processes into useable product. 
 
Extensive effort has been expended in investigating the existence of the emerging 
technology efforts, and in obtaining meaningful details of the processes and products.  
While an attempt has been made to collect and to verify the information provided herein, 
no warranty can be provided that all of the information presented is entirely accurate.  
There are undoubtedly other activities which may have equal or superior promise for 
providing affordable titanium.  Readers are invited to send any comments or additional 
information to the author. 
 
This report may serve as an update for an earlier report that also focused on the 
opportunities for low cost titanium in heavy-duty vehicles.1 
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3.0 Conventional Processing 
 
In order to understand the importance and cost reduction potential of the emerging 
reduction and processing technologies, it is instructive to review the conventional 
production methods and the sources of high cost.  Figure 1 includes a view of the 
sequence of operations normally used in titanium mill products production.  For 
simplicity, this sequence uses Vacuum Arc Remelting as the melt process.  It should be 
recognized that one of the cold hearth melting technologies may be used instead of or 
in conjunction with VAR.  Nevertheless, this long sequence of process steps is currently 
required to produce quality titanium mill products.  As with the mill processing of most 
metals, an iterative sequence of reductions and reheats is required.  More than some 
metals, titanium normally requires many hot work and homogenization steps in order to 
produce desired chemical and microstructural uniformity.  Many of these steps involve 
ingot, bloom, slab or plate conditioning which is required to remove surface 
contamination and roughness, with a resulting high yield loss.  Figure 2 is an estimate of 
the relative cost factors for production of one inch titanium alloy plate, and serves to 
illustrate the sources of high cost.   
 

4% 9%

25%

12%3%

47%

Rutile
Chlorination
Mg Reduction
1st Melt w/ alloy
2nd Melt
Fab to 1" Plate

 
Fig.2  Relative Cost Factors for Conventional Mill Processing of 1” Ti Alloy Plate 2 

 
3.1  Titanium Raw Metal - Sponge 
 
Titanium metal for the production of mill products (sheet, strip, plate, bar, wire), castings 
and forgings has been made by essentially the same process since the start of the 
industry in the mid 20th century.  The vast majority of this metal is made using a multi-
step process pioneered by Dr. Wilhelm J. Kroll in the 1930’s.3, 4  Titanium originally 
comes from the ores Rutile (TiO2; Anatase is a closely relative crystal structure), and 
Ilmenite (FeTiO3).  Ilmenite ores are used in Fe production, leaving a slag rich in TiO2, 
which is normally upgraded for use in Ti production.  Figure 3 is an overview of Dr. 
Kroll’s process as practiced by one manufacturer today.   
 
The steps in this process are: 
1. Chlorination of TiO2 with coke, by the fluidized bed reaction:    

   TiO2 + 2Cl2 + C = TiCl4 + CO2               
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followed by distillation to purify the TiCl4 of metallic impurities such as Fe, Cr, Ni, Mg, 
Mn. 

 

 
Fig. 3  Overview of Titanium Sponge Production 5 

 
2. Magnesium reduction of TiCl4 in a sealed, inert gas filled retort according to the 

reaction:  TiCl4 + 2Mg = Ti + 2MgCl2               
A furnace helps control the temperature of the exothermic reaction.   Either solid Mg 
is melted, or liquid Mg is used, followed by controlled introduction of the TiCl4.  
Molten MgCl2 is tapped from the retort periodically.  After consumption of the Mg and 
final draining of MgCl2, remaining Mg and MgCl2 must be removed. 

3. Vacuum distillation is the most prevalent method of removing impurities from the 
sponge.  Other processes which are or have been used include He gas sweep 
followed by acid leaching, or simple acid leaching.  In most cases, the sponge on the 
outside of the mass, next to the pot wall, is either left in place or discarded as a 
means of absorbing the iron and associated metals leached from the pot. 

4. Comminution of the sponge mass, either before or after purification, is carried out by 
a series of boring, shearing, crushing and screening steps. 

 
Examples of the sponge produced by this process are shown in Figure 4.  Sponge is a 
primary raw material used in the melting operations producing ingot or slab.  It is 
available in various grades, with varying levels of impurities.   
 
3.2  Melting, Ingot and Slab Casting  

 
3.2.1 Vacuum Arc Remelting (VAR):  The conventional, and most common method for 
producing titanium ingot is the vacuum arc remelting process, depicted in Figure 5.  As 
shown, titanium and alloy elements are blended to the desired composition.  This blend 
may contain levels of scrap Ti (revert), which has been carefully controlled for 
composition and contamination.  The blended material is then compacted and the 
compacts assembled with additional scrap and a stub, and welded to form an electrode.   
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a)     b)   
Fig. 4  Ti sponge: a) before, and b) after crushing 6 

 
The VAR furnace consists of a water cooled copper crucible, vacuum system, electrode 
drive and control system.  Some operations utilize high frequency electrical coils around 
the furnace to induce magnetic stirring in the melt for improved homogeneity.  The ingot 
from this first melt is conditioned by grinding to remove surface defects and 
contamination, is inverted and welded to a stub.  A second vacuum arc remelt is 
normally used to improve homogeneity and dissolution of inclusions.  Very high 
reliability applications such as turbine rotor components may use a third VAR.  Only 
round ingots are produced by VAR.  The ingots are conditioned again prior to 
conversion by grinding or turning to remove contamination and surface defects that 
could act as stress concentrations or crack initiators during subsequent hot working. 
 
Sources of high cost in these processes include the labor intensive electrode 
preparation, multiple melt sequence and the intermediate and final conditioning with its 
attendant yield loss. 
 
3.2.2 Cold Hearth Melting:  Cold hearth melting, as its name implies, utilizes a water 
cooled copper hearth to contain a “skull” of solidified titanium, which in turn contains a 
pool of molten metal.  Figure 6 shows a simplified view of one configuration using a gas 
plasma as the heat source (Plasma Arc Remelting – PAM).  Other configurations of the 
process may use an electron beam as the heat source (Electron Beam Cold Hearth 
Melting – EBCHM).  The figure shows only one pool for addition of material and 
homogenization, whereas there are often multiple pools for these functions, with 
multiple plasma or electron beam guns for precisely monitored and controlled heat 
input.  Advantages of cold hearth melting include improved capability for scrap melting, 
improved process control and the ability to cast rectangular slabs in addition to round 
ingots.  Improved scrap utilization involves removal of high density inclusions by gravity 
settling and entrapment in the mushy zone at the bottom of the molten pool.  Figure 7 
shows the rectangular slab produced by one electron beam facility.  Efforts are 
underway to utilize cold hearth melting in a single melt operation for less critical 
applications.  For high stress and fatigue inducing applications such as engine rotors, 
VAR melting may be required after cold hearth melting. 
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Fig. 5  Flow Diagram for Double Vacuum Arc Remelt Process for Titanium Ingot 7 

  
Fig. 6  Schematic of Galt Alloys Plasma       Fig. 7  Slab produced by Antares 

Arc Melting Process 8           Electron Beam Furnace 9 
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3.2.3  Electroslag Remelting (ESR):  ESR has been used for many years for production 
of tool steels, superalloys and heavy forging steel ingots.  Like VAR, the process must 
start with a solid or fabricated electrode.  Figure 8 shows one variant of an ESR furnace.  
The distinction of ESR from VAR is the use of a molten slag into which the electrode is 
dipped.  As the bottom of the electrode melts, drops of liquid fall through the slag and 
into the molten metal pool at the bottom of the furnace.  As the drops fall through the 
slag, they are refined, with removal of non-metallic impurities by chemical reaction with 
the slag.  Solidification occurs essentially uni-directionally, eliminating central pipe, and 
providing improved homogeneity.  Rectangular slabs are also now available from ESR 
furnaces.10 

 

  
Fig. 8  Schematic of ALD Vacuum Technologies Electroslag Remelting Furnace with 

Inert Gas Atmosphere 11 

 
3.3  Mill Processing of Bar, Plate and Strip 
 
When an ingot or slab is produced for use in mill products such as bar, plate and strip, it 
is processed through a sequence of operations such as is illustrated in Figure 1.  The 
multiple breakdown, homogenization, reduction, reheat and conditioning iterations are 
complicated by the oxidation susceptibility of the material.  Production of a hard and 
brittle oxygen stabilized alpha layer (alpha case), combined with surface defects 
requires frequent surface removal and trimming.  These operations are costly and result 
in significant yield loss.  These losses have been reduced to some extent in recent 
years by use of rectangular blooms and slabs rather than round ingot castings. 
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4.0 Emerging Reduction Technologies 
 
It is apparent from the discussions above that if a process could be developed that 
would eliminate many of the process steps in conventional production of mill products, 
very large cost savings could be achieved.  There have been a great variety of efforts 
over many years to achieve this goal, with near universal failure.  In recent years, 
however, a variety of new approaches have been developed and effort has expanded, 
resulting in some promise of success.  Sixteen current efforts at reduction of oxides to 
titanium metal or hydride have been identified, plus a new approach to cost reduction of 
the hydriding of scrap.  The products of these processes range from liquid Ti which may 
be cast into rectangular slabs, to solid slab production, sponge like forms and powder.  
In most cases, current effort is focused on process development with a “CP” grade of 
material as the product.  However, in most cases, claims of applicability to alloys have 
been made, or the expectation expressed.  Little confirmation of flexibility to produce a 
wide variety of complex alloys directly has been provided.  Fortunately, this is not likely 
to be a serious issue for processes producing powder as the ability to blend CP powder 
with master alloy powder and develop homogeneous structures has been repeatedly 
demonstrated.  One unresolved issue for these powder production technologies is the 
treatment of the reaction product into powder of usable impurity level, particle size and 
morphology.  For the slab producing technologies, the ability to produce an alloy slab of 
uniform thickness, chemical homogeneity and adequate surface smoothness to avoid 
excessive conditioning also remains to be demonstrated. 
 
An initial attempt was made to categorize the identified technologies according to type 
of expected product.  The variety of product forms, however, precluded this 
classification.  Also, since there is no standard nomenclature for each process, an 
alphabetical listing was also impractical.  The following list is therefore presented in a 
purely random order.  Position in the sequence has no relation to any factor such as 
development status, size of the effort, development organization or any relationships of 
the author to any organization. 
 
4.1  FFC / Cambridge Process:  Cambridge Univ., QinetiQ, British Titanium, TIMET 

Process Description: This process is most easily understood as the electrolytic 
reduction of solid TiO2 which is immersed in a molten CaCl electrolyte.  Figures 9 and 
10 show the overall process and the reduction cell schematically.  A TiO2 powder is 
formed by conventional ceramic processing into a rectangular sintered cathode 
incorporating a conducting wire.  This cathode is then immersed in the electrolyte with a 
graphite anode.  Reportedly12, removal of a small amount of oxygen from the electrically 
insulating rutile phase converts it into the highly conducting Magnelli phase (TiO2-x).  
Continued electrolysis removes oxygen from the cathode, where it dissolves in the 
electrolyte and is then removed as O2, CO or CO2 at the anode.  At the voltages used, 
no calcium is deposited.  Process times are between 24 and 48 hours, with resulting 
oxygen levels below 1000ppm and N2 of 5 – 20ppm.  Longer processing times allow 
lower O2 levels.  Simultaneous reduction of several oxides has reportedly allowed 
production of Ti-6Al-4V alloy. 
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Fig. 9 Schematic Description of the FFC-Cambridge Process13 
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Fig. 10 Schematic Description of the FFC-Cambridge Process Reduction Step13 

 
Status:  A consortium consisting of TIMET, Cambridge University and QinetiQ, with 
additional team members Boeing and U.C. Berkeley has been awarded a contract from 
DARPA to develop and commercialize this process.  QinetiQ has several 1kg cells 
operating and claims to be capable of producing powders of virtually any alloy.  Powder 
size is approximately 100micron.  Announced plans are to scale to commercial 
quantities in 2004. 
Concerns:  There has been considerable delay in moving to larger scale cells.  In 
addition, little powder has been made available to outside entities in spite of announced 
intention to do so.  Concern has been expressed over the electrolysis and chemistry 
fundamentals of the process.  The cost of manufacture of the TiO2 electrode, including 
cost of the TiO2 itself, remains a concern, as does the cost of reduction of the reduced 
mass to usable powder.  The long process time required to reduce the electrode to Ti 
metal also limits the potential for low cost. 
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4.2  Armstrong Process: International Titanium Powder  
 
Process Description: This process produces Ti by the reduction of TiCl4 with sodium, as 
does the Hunter process. However, ITP has devised a nearly continuous process in 
contrast to the batch mode of Hunter. A schematic of this process is shown in Figure 11. 
There are several key points which must be understood.  The reaction is continuous 
and takes place in the “Ti Reactor.”  Liquid sodium is pumped through a cylindrical 
chamber containing a centerline second tube. TiCl4 vapor is injected into the sodium 
stream through this inner tube/nozzle. Reaction occurs immediately downstream of the 
nozzle, with Ti powder being carried out in the excess Na stream. Ti, Na and NaCl are 
separated by filtration, distillation and washing. The powder produced has a purity level 
near to that of commercially pure Grade 1, including a Cl content of  less than 50 ppm. 
The pilot plant with a full scale reactor has achieved oxygen levels less than 1000ppm. 
By simultaneous reduction of other metal chlorides, it is possible to produce alloy 
powders..  
 
Figure 11 shows several recycle steps either in the present small scale and pilot plant, 
or envisioned for a future integrated plant. The Camano cost study14 also investigated 
this process and concluded that the “most probable” scenario produced Ti powder at 
near the present “cost” (should have stated “price”) of sponge ($3.54/lb). An “Optimistic” 
scenario, which includes recycling of NaCl and an integral TiCl4 reactor would produce 
powder at production cost of  $2.15/lb. This latter scenario assumes that TiCl4 can be 
produced at a cost below its purchase price from outside vendors. These cost 
estimates, however, do not include the profit or SG&A required by a business 
enterprise. On the other hand, production of a quality Ti powder at this price level is a 
great improvement over the current cost of Ti powder, which may be in the range of $20 
–40/lb. 
Status:  ITP is in the process of running a pilot plant to refine operating parameters and 
separation techniques in a continuous mode. The Ti reactor is capable of operating at 
~2 million pounds per year rate for one hour. Scale up beyond that level would involve 
larger tankage and multiple reactors of the same design. Economies of scale would 
likely come from integrating some of the auxiliary processes.  Product from pilot 
production runs has been thoroughly tested and analyzed to characterize its quality, 
morphology, and particle size distribution. Downstream melt processors have tested 
and verified good performance of ITP powder samples. ITP is working with powder 
processors on both process and powder improvements to optimize the use of the 
company’s powder in their processes. 
Concerns: This process has been demonstrated to produce useable powder, and is 
close to commercialization. Remaining issues include demonstrating equipment 
durability, optimization of the separation equipment, and determining the capital cost of 
a fully integrated plant.  Development of the processes to be used for producing the 
particle size and morphology required for product applications must be completed, and 
their cost determined. 
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Fig.11  Armstrong / ITP Process Flow Diagram 15 
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4.3  MER Corporation 
 
Process Description: MER has developed an electrolytic reduction process which is 
significantly different than others.  This process utilizes an anode comprised of TiO2 
plus a reducing agent, and an electrolyte of possibly mixed fused halides.  Related 
background of the anode technology, applied to Mg and Al is provided in a set of 
expired patents. 16 A schematic of the process is shown in Figure 1217.    TiO2 or Rutile 
powders are mixed with carbonaceous material and binder, molded into electrode form 
and heat treated to form a composite anode.  Ilmenite could be used for iron containing 
alloys if the other impurities could be tolerated.  The composite anode contains a 
reduced TiO2 compound as TixOy-C.  Ti+3 ions are released into the electrolyte, are 
further reduced and deposit as Ti solid on the cathode.  A CO / CO2 mixture is released 
at the anode.  The Ti can be deposited as powder, flake or a solid deposit as shown in 
Figure13.  The form of the deposit is determined by salt composition and operating 
conditions.  Powder with particle size from 1 to 125 micrometer has been produced, and 
larger particles are believed possible.  The mean particle size can be controlled by 
process conditions, but the achievable particle size distribution for any one mean size 
has not been determined.  An alternative to producing powder is the direct production of 
solid form (Fig.13, c)).  The density of this solid form has not been reported.  However, 
after some intermediate treatment, could conceivably be subsequently worked by 
conventional mill processes, avoiding the melting and ingot breakdown steps.   
Status:  MER has been awarded a DARPA contract for development of the process.  
One objective of this project is to produce billet with 300 – 500 ppm oxygen, suitable for 
mill processing.  Current cell size or production rate is not known.  Other team members 
in this contract are not known. 
Concerns:  While impurities are reported to be low, analytical confirmation is necessary.  
Processing cost needs to be determined.  Consistent production of any particular 
product form remains to be demonstrated.  Deposition of solid deposits with density, 
uniformity and configuration suitable for mill processing needs to be confirmed.  As with 
most of the emerging processes, scale up, product acceptability and economics need to 
be developed. 
 
4.4  SRI International 18 

 
Process Description:  This process utilizes a high temperature fluidized bed to convert 
TiCl4 and other metal chlorides to Ti or alloy which is deposited on a particulate 
substrate of the same material. 18  Particle size is flexible from microns to over 1mm 
diameter.  Particle size distribution is reported to be narrow, and appears to depend on 
the particulate substrate feedstock.  One experimental run of this process during 
laboratory exploration experiments, using Al2O3 particles as a substrate is shown 
schematically in Figure14.  Product of a different run using Si microspheres as substrate 
is shown in Figure15.  Eventual production of Ti powder would use any Ti or Ti alloy 
particulate substrate.  This substrate would be produced by crushing about 1% of the 
product to smaller size and fed back into the reactor.  Feasibility of alloy production has 
been demonstrated.  Recent effort has focused on equilibrium calculations required to 
define the optimum experimental conditions for deposition of Ti and Ti-Al-V alloys.  
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Control of impurities is expected to be excellent, with purity analysis being investigated.  
Alloy of broad chemistry, including many metals may reportedly be produced.   
 

 
 

Fig. 12  Schematic of the MER Composite Anode Process17 
 
 

 
 
 
 
 
 
 
 
  a)    b)        c) 
Fig.13.  Titanium deposits in, a) Particulate, b) Flake, and c) Continuous form, produced 

by various salt compositions and operating conditions of the MER Process17 
 
Status:  The process is in early lab stage of investigation.  SRI has been awarded a 
DARPA contract for development.  Near term efforts will focus on: study of composition 
and microstructure of metal powders, rates of growth, and extent of reaction; purity (O, 
C, N) analysis; continued work exploring agglomeration in larger, taller beds; study of 
products recycling and/or disposal; reactor design; cost; production of powders for 
testing.  At present there are no other participants on this team.  However, discussions 
are being held with major players.  Bench scale effort is scheduled for 2004, with pilot 
plant construction and operation during 2004-2006, and industrial production beginning 
in 2006. 
Concerns:  The economics of production in view of the need for particulate substrate, 
use of TiCl4, and the unknown energy efficiency vs. deposition rate must be determined.   



 

Summary of Emerging Low Cost Titanium Technologies   EHKTechnologies 
For US Dept. of Energy / Oak Ridge National Laboratory  Page 18 
 

 
 

Fig. 14  Schematic of SRI International Ti Powder Production Process. 
 

 
Fig. 15  Ti-Si-V alloy deposited on 23 µm Si spheres with the SRI International Process. 
 
4.5  BHP Billiton 19 

 
Process Description:  BHP Billiton is the world's largest diversified resources company.   
They are an industry leader or are in near industry leader positions in major commodity 
businesses, including aluminium, energy coal and metallurgical coal, copper, ferro-
alloys, iron ore and titanium minerals, and have substantial interests in oil, gas, liquefied 
natural gas, nickel, diamonds and silver.  This includes extensive expertise in mineral 
sands extraction, beneficiation, and in steel, aluminum and copper production.  Little 
has been publicly released on the BHPB process development.   Their process is 
announced to be based on the electrolytic reduction of TiO2 in a CaCl2 based bath.  
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They are expending significant effort on understanding the fundamentals of the process.  
Their aim is to achieve commercial production by 2009. 
Status:  Present scale of this process is designed to prove feasibility and understanding 
of process fundamentals.  Small quantities of titanium metal have been produced.  A 
1kg/hr sub-pilot scale facility is currently being built which will prove the feasibility of 
their production concept, provide additional process fundamental understanding and 
provide engineering data for design of a production facility.  It will also provide sufficient 
material to fully develop the auxiliary processes including fabrication.  The sub-pilot 
facility is expected to be completed by early 2004. 
Concerns:  As with all of the electrolytic processes in molten salt, initial concerns involve 
the ability to achieve very low levels of chloride.  Economic achievement of adequate 
oxygen levels is also to be demonstrated.  Also as with all of the emerging reduction 
technologies, the economics of the overall process remains to be demonstrated.  The 
BHP Billiton approach is understood to differ substantially from other EDO processes 
and the 2009 target date is believed to be feasible. 
 
4.6  Idaho Titanium Technologies – Titanium Hydride Powder 20 

 
Process Description: ITT is the licensee for Ti applications from Plasma Quench 
Technologies Inc. the patent holder of the basic technology which was spun out of INEL 
in 1994.  This process involves the thermal dissociation and reduction of TiCl4.  To 
accomplish this, it passes TiCl4 through an electric arc in a vacuum chamber, which 
heats the vapor to over 4000°K forming a plasma.  A stream of hydrogen carries the gas 
through a Delaval nozzle, where it expands and cools.  The combined effect of rapid 
cooling (quenching), the reducing effect of hydrogen and formation of HCl prevent back 
reaction of the Ti and Cl.  A very fine hydride powder is therefore produced by the basic 
reaction.   
Status:  ITT has been working on a NIST ATP grant (10/1/01-9/31/04) to develop the 
technology to increase this particle size to the range of 50-300micrometers, where it can 
be used in more conventional powder metallurgy based processing.  As of this report, 
success has been achieved in producing spherical, apparently non-porous, powder in 
the 1 – 10 micrometer range with “narrow” particle size distribution.  The developers 
believe particle size can be manipulated as desired.  No impurity analysis is available.  
However, due to the use of a closed system and inclusion of hydrogen in the process, 
oxygen is claimed to be very low.  Likewise chlorides are believed to be very low.  
Remaining chlorides are expected to be removed in subsequent vacuum sintering.  No 
consideration has been given to production of alloy powders.  Powder is expected to be 
available for testing by early Fall 2003.  The new technology maintains the continuous 
mode of process operation, and the ability to start and stop production at will.  
Simultaneous to addressing the particle size issue, the reactor durability and energy 
efficiency have been improved.  Current production rate capability is 40lb. / hr.   
 
Cost factors which are claimed for this process include simple and therefore low cost 
equipment and low labor content.  Prior to the current improvements, Camanoe 
14estimated the “process cost” at mid-value, or “likely current” scenario, cost of ~$3.26 / 
lb., just below the recent world market price for sponge.  To this must be added normal 
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business costs, which normally add up to 40% to manufacturing costs.  The effect of 
recent process changes on cost is unknown. 
Concerns:  The product of this process, being a hydride, may have advantages in 
powder metallurgy manufacturing of some discrete components; it will be of limited use, 
however, without dehydriding, for production of general mill products.  Use of TiCl4, 
while providing a purification method, also places a cost burden on the process, which 
some other technologies are seeking to eliminate. While previous serious concern about 
small particle size has apparently been successfully addressed, the goals of the NIST 
program for 50-300micrometers is consistent with industry need, and needs to be 
demonstrated.  Likewise, careful analysis of impurity levels is required to meet 
commercial needs.  To achieve minimum cost, the HCl product of the reaction must be 
economically recycled or sold. 
 
4.7  Ginatta 
 
Process Description:  Dr. Ginatta developed the fundamentals of this process as a 
thesis at Colorado School of Mines, and has continued development through several 
different production concepts.  In the 1980’s methods were developed to electrolytically 
produce solid Ti deposited on cathodes which were periodically removed, thereby 
providing a continuous process. 21, 22  This technology was supported in part by and 
licensed to RMI from 1985 to 1991.  It reportedly reached production of 70 tons / year in 
1985. 23  Engineering issues related to multivalency and liquid metal production resulted 
in high production cost.  In 1992, these issues and a market downturn caused RMI to 
withdraw from the project.  Various issues with this earlier technology were addressed 
by Ginatta, resulting in a new concept which produces Ti liquid. 24-26  This is an 
electrolytic process, in which TiCl4 vapor is injected into a halide electrolyte where it is 
absorbed.  A “multilayer cathodic interphase” separates the molten Ti cathode from the 
electrolyte.  This multilayer phase consists of ions of K, Ca, Ti, Cl, F and some 
elemental K and Ca.  The layers contain various oxidation states of the species, with the 
bottom layer producing liquid Ti, which falls to the molten pool.  Ti is contained by a 
water cooled Cu crucible, so that a frozen layer of Ti at the bottom and slag around the 
electrolyte provide insulation and protection from halides.  Reportedly, solid scrap Ti 
and alloying elements can be introduced either through solution in the TiCl4, or by solid 
metering via a screw feeder.  The solid Ti layer may be allowed to grow either within a 
fixed cell geometry, or by using a movable hearth.  In either case, the hearth is lowered 
and the solidified slab and electrolyte may be removed, as shown in Figure 16.  Start up 
time for a subsequent batch is reported to be only 6 minutes. 27  Another claim of this 
technology allows liquid Ti to be tapped from the reaction vessel into a separate 
chamber.  In this configuration, one could envision its use to provide liquid metal for 
castings, or to feed a succession of slab or billet molds.  In such case, it could be 
considered a continuous process. 
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Fig. 16  Solidified Electrolyte and Ti Cathode from Ginatta Process. 26 

 
Status:  The current pilot plant produces 250mm diameter ingot.  Production of slabs 1 x 
4 x 0.5 meter is being considered.   
Concerns:  The process is quite complex, so is not likely to be duplicated by others.  
The engineering issues which forced closure of the earlier effort are reported to be not 
as severe in the current high temperature cell.  Confirmation of the product quality 
would be advisable.  The use of TiCl4 is a limiting factor on cost reduction if its 
production is not integrated into the process.  Likewise, Cl gas must either be disposed, 
sold or recycled.  No cost study appears to be available.  If operated in the batch mode, 
start up and shut down costs would add to production cost.  If operated in the liquid feed 
mode, the ability to start and stop the liquid stream needs to be demonstrated.  The 
ability to add alloy elements or scrap and achieve a uniform solid appears very difficult; 
in a liquid feed mode, a steady state composition may be achievable, but this too must 
be demonstrated. 
 
 
4.8  OS Process 
 
Process Description:  Professors Suzuki and Ono of Kyoto University have investigated 
the details of the calciothermic reduction of TiO2 and developed a process for Ti 
production that is proceeding toward commercialization.  In their most recent 
publications28-32 they provide details of the mechanism of reduction of TiO2 in Ca / CaO / 
CaCl2 solution baths.  A schematic diagram of an experimental setup for practicing the 
process is shown in Figure 17.  At 1173ºK, CaCl2 can dissolve 3.9 mole % Ca, but 
about 20 mole % CaO.   Electrolysis is carried out above the decomposition voltage of 
CaO, but below that of CaCl2.  In this process, Ca+2 is reduced to Ca at the cathode, 
and O2 is produced at the anode, combining with C to form CO / CO2.   It was found that 
when TiO2 particles are in contact with the cathode, low oxygen Ti can be produced, 
whereas if the particles are electrically isolated, only suboxides are produced.  This 
behavior is attributed, at least in part, to the high concentration of Ca on the cathode.  
2000 ppm oxygen was achieved in 3 hours, 420 ppm oxygen was achieved in 24 hrs, 
and less than 100 ppm was achievable, at presumably longer times.  Product of the 
reduction is lightly sintered granules.  Optimum bath composition was found to be a 
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CaO composition in the range 1-6 mole %; higher CaO contents were found to slow 
reduction due to slower dissolution of the CaO reaction product.  A cell design for 
continuous production of Ti has been proposed, and the possible use of inert anodes 
discussed.  Formation of powdery carbon at startup of the bath was described, and 
attributed to initial Ca reduction of dissolved CO2.  After startup, carbon is deposited 
only at the anode. 
 

 
Fig. 17  Schematic of OS Calciothermic Process for TiO2 Reduction. 29 

 
Status:  Industrial application of the process has begun in collaboration with a Japanese 
aluminum smelting company.  However, it is reported to require solution of many issues 
before quality product is available on a large scale.  Operation of a “mud” covered bath 
in air has succeeded in preserving the reduced Ca.  Ti production in this bath is being 
addressed. 
Concerns:  The production of low oxygen Ti in reasonable times and moderate cost with 
this process appears feasible.  However, separation of the Ti product from the bath 
constituents, and purification to very low Cl level is still being addressed.  In addition, 
the processing of the Ti lump into usable form, other than as melt process feed has also 
not been addressed.  These operations could add considerably to cost.  Finally, the 
reduction has been discussed as a purely calciothermic process.  However, the 
possibility of involvement of electrolytic reduction of suboxides produced by the 
calciothermic process has not been addressed. 
 
4.9  Millennium Chemical 33 

 
Process Description:  Millennium Chemical is the world's second-largest producer of 
titanium dioxide (TiO2) and the largest merchant seller of titanium tetrachloride (TiCl4) 
in North America and Europe.  As such, they have a strong position in intermediate 
feedstock for both TiCl4 and TiO2 based Ti metal production processes. Millennium is 
investigating options that allow it to vertically integrate from its position into a  producer 
of titanium metal products.  They are developing a process that produces Ti and Ti alloy 
powder. 
Status:  No details of the process or its current status are available. No announcement 
is expected before about mid 2004. 



 

Summary of Emerging Low Cost Titanium Technologies   EHKTechnologies 
For US Dept. of Energy / Oak Ridge National Laboratory  Page 23 
 

Concerns:  It is difficult to formulate concerns until more is known of the process. 
 
4.10  MIR-Chem 
 
Process Description:  Little is published on the collaboration of MIR-Chem and the 
University of Bremen.  According to a July 2003 presentation at the Ti-2003 Conference 
in Hamburg34, this group is developing a process based on the equation: 

TiO2+ 2 I2 + 2 CO = TiI2 + 2 CO2 
The process is carried out on titania granules held in a “shaking reactor,” where 
oscillating patterns of particles, similar in appearance to moiré patterns, occur.  This 
quasiperiodic pattern, termed a Faraday hydrodynamic instability, is the parametric 
excitation of surface waves via vertical oscillations of a flat bottomed-container filled 
with liquid. As a result, patterns appear on the surface, and in the case of a slurry, 
induces the pattern in the particles.  High energy impact between particles provides the 
energy required for the reaction to proceed.  The reaction mechanism is also termed a 
“tribo-chemical reaction.”  In the formation of TiI2, the process dwell time is on the order 
of four days.  Following this reaction, TiI2 is thermally dissociated to Ti and I2, and the 
iodine recycled.  More details may be available in the printed version of this paper. 
Status:  Unknown 
Concerns:  The dwell time of this process may appear very long for achievement of low 
cost.  No data is available at present on product characteristics or projected cost. 
 
4.11  CSIR 35 

 
Process Description:  South Africa is one of the primary suppliers of titanium ores.  As 
such, it has a strong interest in promoting use of titanium, and in increasing the added 
value of its minerals.  CSIR is a South African science council operating as a market-
oriented contract and consortium research partner to its clients and stakeholders.  It has 
developed the fundamentals of a process to produce Ti from TiCl4 and hydrogen as a 
reductant.  Pure Ti in sponge form is planned as the product.  Preliminary cost 
estimates indicate pricing competitive with the minimum production costs of Ti sponge 
via existing Kroll plants. 
Status:  Proof of concept experimental work has been completed and preliminary 
patents filed.  CSIR is also planning a consortium to develop titanium metal technology, 
and are anticipating approval of funding for the first phase of that development. 
Concerns:  It is too early in development to understand the concerns that should be 
addressed.  Further understanding of the product and cost will be necessary to 
determine if the product will compete with Kroll sponge or the other new emerging 
technologies. 
 
4.12  Quebec (Rio Tinto) Iron and Titanium 
 
Process Description:  Québec Iron and Titanium (QIT) with mining and smelting 
operations in Québec, Canada is recognized as a world producer of titania slags 
(Sorelslag, and UGS).  QIT along with Richards Bay Minerals (RBM) with operations in 
South Africa insure a leading position of their parent company RIO TINTO in the TiO2 
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business.  They have recently filed an International Patent Application36 for the 
electrolytic conversion of titanium slag to Ti metal.  The concept is shown from the 
patent application in Figure 18.  The product of the process is liquid Ti, which may be 
cast into ingots, billets or molds.  There are several variations of this concept, with 
different electrolytes, anodes and methods of operation.  However, the primary concept 
consists of pouring molten salt electrolyte, such as CaF2 into the chamber, then pouring 
in molten titanium slag which is allowed to settle below the electrolyte, followed by 
electrolysis.  Solid electrolyte, slag and metal forms a self-lining protective skull on the 
walls and floor of the cell.  This skull is a key feature of the process which solves the 
containment issue for such a corrosive combination melt.  This practice is used in their 
large Electric Arc Furnaces (EAF) for smelting ilmenite.  The electrolysis may be carried 
out in one or two steps.  In the two step process, the first electrolysis step purifies the 
slag by removal of less reactive species such as Fe, Cr, Mn, V etc.  Droplets form at the 
electrolyte / slag cathode interface, and due to density difference, fall to the chamber 
floor.  This metal mixture collects and is removed through a tap hole.  After this reaction 
is complete, the second step, operated at a higher temperature, electrolyzes the Ti from 
the slag, which also collects at the chamber floor and is removed through the tap hole.  
If the process is performed in only one electrolysis step a mixture of titania slag 
(Sorelslag) and upgraded titania slag (UGS) is used insuring that the total iron content is 
sufficiently low (1.4 wt.% FeO) to avoid requiring its removal.  Otherwise, operation of 
the process is as described above.  Molten titania slag can be supplied continuously to 
the chamber either by connecting the electrolyzer to an operating EAF without exposing 
the molten titania slag to the atmosphere or by feeding solid titania slag to the melt 
during continuous operation.  Since many new low cost alloys for automotive and other 
markets have substantial iron content, this Fe level is no longer an issue.  Other metal 
oxides may be added to the melt to obtain various alloys.  For example, alumina and 
vanadium pentoxide may be added in order to obtain ASTM grade 5 (Ti-6Al-4V).  
Quality of titanium ingots is measured using the standard used to qualify titanium ingots 
(e.g., ASTM B265) as a main reference. 
Status:  Considerable work has apparently been done on the QIT process.  Since data 
is included in the application for a variety of cell designs and operating modes, the final 
process configuration is based on multiple iterations of design concepts.  No information 
is available, however, on current production capacity or plans for commercialization. 
Concerns:  As with other emerging processes, repeated demonstration of compositional 
control and other quality measures will be necessary.  No cost analysis of the process is 
available. 
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Fig. 18  Basic Concept of QIT Electrolytic Ti Production36 

 
4.13 EMR/MSE Process (University of Tokyo):  Electronically Mediated Reaction / 
Molten Salt Electrolysis 37 

 
(Prof. T. Okabe is a graduate of Kyoto University, where he studied under Prof. Ono 
[see OS Process].  His own group at Tokyo now studies electrochemical and 
metallothermic processing.  He has developed two new processes for TiO2 reduction.) 
 
Process Description:  This process is shown schematically in Figure 19.  TiO2 powder or 
a preform is placed in a holder shown on the left side.  A Ca + 18 mass % Ni alloy is 
placed in the bottom of the reactor, and a carbon anode is provided.  During the 
reduction step, no current is provided to the carbon anode, but an electrochemical cell 
forms between the TiO2 cathode and the Ca alloy “reductant.”  During this phase of the 
process cycle, TiO2 is reduced and Ca ions are formed.  Pure titanium is reported to be 
produced.  Results on trials simulating the left (reduction) side of the cell have been 
conducted and produced titanium with impurity levels on the order of 0.15 – 0.2 wt.% 
Ca, 0.2 – 0.5 Fe, .04 - .16 Ni and .35 - .65 O2.  Process times were on the order of 2 to 
4 hours.  Microstructure of the Ti produced is shown in Figure 20.  Interestingly, only 
about 5% of the charge necessary to reduce the TiO2 present actually passed through 
the circuit.  The mechanism of the process is under discussion. 



 

Summary of Emerging Low Cost Titanium Technologies   EHKTechnologies 
For US Dept. of Energy / Oak Ridge National Laboratory  Page 26 
 

( ) p
C u rre n t m o n ito r  
/  c o n tro lle r

e - C a rb o n  a n o d e

C a C l2 m o lte n  s a ltT iO 2

e -

C a -X  a llo y  
Fig. 19  Schematic of Okabe EMR / MSE Process 37 
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Fig. 20  Titanium Produced by the EMR / MSE Process 37 

 
The right side of the cell in Figure 19 is conceived as being operated at different times 
than the reduction occurring on the left side.  At such times, Ca ions are expected to be 
reduced and the Ca alloy replenished. 
 
Status:  The process is in early stages of development.  Reaction mechanisms are not 
determined. 
 
Concerns:  Until the current mechanism uncertainties are resolved and more work is 
done on the complete process, no assessment may be made. 
 
4.14  Preform Reduction Process (University of Tokyo) 38 

Process Description:  This process, also under development by Prof. Okabe, is shown 
schematically in Figure 21.  TiO2 and a flux of either CaO or CaCl2 are formed into a 
preform and held with minimal contact in the space above a bath of molten Ca metal.  
The vapor (and flux?) react with the TiO2, leaving Ti and CaO.  Leaching and washing 
of the product produce titanium such as shown in Figure 22.  Other temperature, fluxes 
and flux / TiO2 ratios produced different powder size and morphologies.  Ca content of 
the final product has not been sufficiently reported.  Oxygen content is on the order of 
2800 ppm.  The mechanism of this process is under investigation.   
Status:  This process is in the early stages of development. 
Concerns:  Achievable oxygen and Ca contents need to be determined.  Since the 
reaction is highly exothermic, adequate temperature control may make scale up of the 
process difficult.  Concentration of reaction products and their recycle could be costly.  
No overall cost estimate is available. 
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Fig. 21  Schematic of Okabe Preform Reduction Process 38 
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Fig. 22  Ti Powder Produced by Okabe Preform Reduction Process in 6 hrs and Ca/Ti 

Ratio of 0.5 38 

 
4.15  Vartech, Inc. 39 

 
Vartech has received a Missile Defense Agency SBIR contract to develop a vapor 
phase process to produce titanium powder.  The process uses TiCl4 vapor and a 
gaseous reducing agent reacted in an inert atmosphere.  The key objective of the 
project is to make powders at a “cost” of $3 – 5 / lb in large quantities.  The process is in 
early stages of development and no additional details are available.  It is therefore not 
possible to further describe the process, its status or concerns. 
 
4.16  Northwest Inst. for Non-Ferrous Metals (NIN) – China 40 

 
Process Description:  NIN is working to reduce the cost of hydride / dehydride powder 
made either from sponge, ingot or scrap.  This effort is therefore not a new reduction 
technology, but is included here as an additional, or perhaps complimentary cost 
reduction process.  Two approaches are being pursued.  In the first, process efficiency 
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efforts such as fast crushing, automatic grading, gas protection and fast hydriding are 
being developed.  The second effort is in developing a “motive HDH” process in which 
the material being hydrided is simultaneously being attrited to break up the 20 – 30 µm 
diffusion layer and thus speed the process.  Combination of these approaches is 
expected to reduce process cost from ~$12.5 – 16.3/kg down to ~$2.4 – 2.9/kg. 
Status:  Pilot facilities are scheduled to be tested 
Concerns:  There is some concern with methods of raw material preparation.   Success 
of the other new Ti reduction technologies could either make this process redundant, or 
could be viewed as candidates for application of the technology for comminution of their 
process product. 
 
4.17  Idaho Research Foundation 41 

 
Process Description:  This process has been termed “Mechanochemical Processing,” 
since the reaction is energized by the mechanical energy of particle impingement by 
milling media, rather than by thermal energy.  Powders such as magnesium or calcium 
metal, or their hydrides are placed in a milling apparatus such as ball, rod or attrition mill 
along with TiCl4 liquid.  Milling reportedly promotes the solid state chemical reaction.  
Calcium hydride is preferred as the product is Ti hydride.  Patent data shows that Al and 
V chlorides may also be utilized to produce alloy powder. 
Status:  The concept has been demonstrated and the process is in the research stage. 
Concerns:  Use of TiCl4 and other chlorides, and metallic or hydride reductant may lead 
to high cost.  The ability to scale up to large quantity production would need to be 
demonstrated.
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5.0 Developing Alloy and Product Technologies 
 
A great variety of activities are taking place worldwide on many subjects related to 
reducing the cost of processing titanium, developing lower cost alloys and in 
applications technology.  Only a few such activities will be discussed here, and the 
discussion will focus mainly on those topics of interest to vehicular and industrial 
applications.  Discussion is limited to providing only a few of the key points available at 
the present time.  Several recent or upcoming publications are of interest to those in this 
field. 42-45 

 
5.1 Alloy Development 
 
• Comparison of ingot and PM routes to production of a Ti-10V-2Fe-3Al alloy showed 

that while UTS was similar, tensile elongation was higher for the PM approach, and 
tensile property variability was reduced by 40-60%.  This finding has important 
implications for establishment of design allowables. 46 

• A particulate reinforced alloy, Ti-6Al-4V-2Mo-1Fe+10vol.% TiB2, has been 
developed for engine valve applications.  Processing uses hydride Ti powder, 
master alloys and boride particles.  High matrix-boride coherence, in part due to 
close CTE match, produces double the fatigue strength of ordinary Ti alloys, with low 
wear and increased elastic constant.  Valve use is limited to intake position due to 
temperature limits. ~0.5 million valves have been used in the Toyota Alzeta; high 
cost has limited further use. 47 

• A new type of alloy, termed “Gum Metal,” has been developed with the following 
characteristics, and as illustrated in Figure 23:48 
o Extremely low elastic modulus with extremely high strength   
o Super-elasticity, capable of enormous elastic deformation exceeding 2.5%, 

displaying non-linear elastic deformation behavior (Hooke's Law does not hold 
true).   

o Super-plasticity that allows cold working of 99.9% or more without work-
hardening. 

Composition is Ti + 25 mole % (Ta, Nb, V) + (Zr, Hf, O) and fabrication is via 
compaction of elemental powders.  Applications include automotive springs, seals, 
diaphragms, medical and consumer products. 

 
Fig. 23  Characteristics of Gum Metal48 
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• A new alloy for improved oxidation resistance and reduced cost has been developed 
for exhaust system applications.49  Composition was optimized at 1.5% Al on a CP 
Grade 1 base.  Objectives included workability equal to Gr 2, with high temperature 
strength and heat resistance greater than Gr 2.  Ultimate and 0.2% yield strength are 
greater than Gr 2, with 0.2% proof stress equal to 304 stainless steel below 400ºC.  
Oxidation is only 2/3 that of Gr 2 at 700ºC.  Strip has been made into welded tube, 
with less property degradation than Gr 2.  For heat exchanger applications, it has 
hydrogen resistance superior to Gr 2. 

• A low cost α/βalloy with improved machinability and properties equivalent to Ti-6Al-
4V has been developed.  Cost was reduced by design of the alloy to utilize scrap 
and low cost master alloy in a single electron beam melt process.  Target 
applications include automotive forgings, armor and land based structures. 50 

 
5.2 Powder Consolidation 
 
A majority of the emerging reduction technologies described in Section 4 are designed 
to produce powder.  This powder may be usable in the existing titanium powder 
metallurgy industry.  PM, however, represents only a few percent of the overall titanium 
industry.  The reason is only partially explained by the high cost of current quality 
powders.  Very few PM companies provide titanium parts.  Explanations for this have 
included the high cost of powder, lack of familiarity by designers, inadequate sintering 
facilities and binder systems that result in high interstitial content in finished parts.  
Reference 1 describes activities by ADMA and Dynamet Technologies to develop 
powder based titanium business, which has been increasing.  A recent review51 of 
approaches such as these provides additional insight. It has also been reported that 
Advanced Forming Technology, a unit of Precision Castparts, is preparing to provide 
commercial titanium PM products.52  Availability of new, high quality, lower cost 
powders can be expected to have a positive influence on the Ti PM industry, but the 
other factors are likely to restrict the rate of growth.   
 
Little work has been done on methods of using powder to develop alternative routes to 
products such as bar, wire, sheet, plate and forgings.  However, there appears to be 
considerable promise for significant cost reduction by process routes that avoid the 
costs of conventional melt and mill processing.  Figure 2, above showed an estimate of 
the relative contributions of process steps to the cost of plate, and Figure 1 showed the 
reduction in process steps conceivable with the emerging direct reduction powder 
processes.  The process arrow for direct powder, however, includes processes yet to be 
developed for consolidation and forming of powders into plate or sheet which can be 
rolled and heat treated to the desired end product.  Even less attention has been given 
to use of these powders to reduce the cost of extrusions and forgings. 
 
Work in the 1950’s and 1960’s at du Pont Company53-57 demonstrated the feasibility of 
producing titanium plate, sheet and bar from powder.  That work was abandoned, 
however, when welding was attempted on the resulting product without success.  It was 
concluded that in order for this set of processes to be viable, chloride levels in the 
powder would need to be below 0.005% (50ppm), whereas available powders had 
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chloride in the range of 0.01 to 0.05%. 58  du Pont also found that successful 
compaction required irregularly shaped particles rather than the spherical particles 
preferred by molding processes.  Table 2 provides a summary of some of this work.   

 
Table 2.  Summary of Ti Alloy Pressing Procedures from duPont Patents. 

Blend 
(m=mesh;  
6-4=Note) 

Initial 
Forming 

(tsi=tons/in2) 

Partial 
Homogeniz.

Intermed. 
Reduction 

Anneal Final Cold 
Reduction 

Final 
Homogeniz.

.85 -60m Ti; 
.15 -270m 6-4 

Direct to 
0.060” strip 

15min 
@1200ºC 

To 0.010” 30min 
@1030ºC  

To 0.003” 900ºC, 1hr  
+ 600ºC, 1hr

.9 -60m Ti; 
.1 6-4 

5x5x.35”  
@ 12.5 tsi; 
73% dense 

20min 
@1025ºC 

77% dense 

45-65% 
Reduction 

30min 
@1065ºC 

To 0.030” 
No porosity 

1100ºC, 4hr 

.9 -60m Ti; 
.1 6-4 

Direct to 
0.011” strip 

15min 
@1000ºC 

85% dense 

To 0.002” 30min 
@ 1010ºC 

To 0.001” 850ºC, 30min.

.9 -60m Ti; 
.1 -200m 6-4 

2” dia. X 4” 
isopress @ 

25tsi 

15min 
@ 1065ºC 

Heated 600ºC 
Argon; 

Extruded 4:1

  1200ºC 1hr 

.9 -60m Ti; 
.1 -200m 6-4 

5x5x1” 
12 tsi 

73% dense 

30min 
@ 1030ºC 

1” sq. x 5” bar 
cold forged to 

.6”sq x 10”  
@ 20 to 60tsi
100% dense 

30min 
@ 1000ºC 

2 bars cold 
rolled & 2 

@600ºC to 
0.3” dia rods 

1200ºC 15min

.730 -60+200 
Ti; -20+325 m 
.13V, .11Cr, 

.03Al 

Direct to 
0.027” strip 

15min  
@ 1300ºC Ar;

induction 
89% dense 

Cold rolled on 
2-high mill to 

0.020” 

15min  
@ 650ºC 

Cold rolled on 
4-high to 
0.010” 

1300ºC 15min
Beta 

282pts Ti -
60m;  

6pts -60m Cr; 
6pts-100m Fe 
6pts-100mMo 

Direct to 
0.008-0.010” 

strip 

15min  
@1200ºC He
90% dense 

Cold rolled to 
0.005-0.007”
100% dense

15min 
@ 1200ºC He

Cold rolled to 
0.001” 

450ºC 1hr 

Note: 6-4 is 60%Al, 40%V master alloy powder 
 
This work reportedly produced product of comparable microstructure and properties to 
conventionally processed alloys, other than the high chloride content.  Use of the 
elemental or master alloy blends to produce completely homogenized alloy was 
established.   
 
5.3 Solid Freeform Fabrication 
The subject of solid freeform fabrication has received great attention, with application to 
a wide variety of materials, and with many processes.  A few of the activities applying 
these techniques to titanium are as follows: 
• Electron Beam Melting:  An electron beam, controlled by a CAD file, scans the 

surface of a powder bed, fusing the material only in the area of the desired part.  
Layers of powder are sequentially spread and fused as above to create a 3D 
structure, as shown in Figure 24.59, 60 

• A similar process, but with the use of a laser as the heat source has been used 
successfully by Trumpf to produce complex shapes such as that shown in Figure 
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25.61  Figure 26 shows the principle of an AeroMet Laser Additive Manufacturing 
unit. 

 

     
Fig. 24  STL File, E Beam Process and Finished SFF Part 59 

 
 
 
 

     
Fig. 25  Complex Ti-6-4 Parts by Trumpf      Fig. 26  AeroMet Laser Additive  
Laser Melting Technology 61       Manufacturing Using Powder 62 

 
• Laser Precision Metal Deposition uses flat wire fed into a melt pool formed using a 

laser as shown in Figure 27. 63, 64  This process is used to build up portions of a 
structure on a substrate in order to avoid extensive machining away of unwanted 
material.  The process is entering production in aerospace manufacturing.   

• The Plasma Transferred Arc (PTA) process is being developed and demonstrated 
for production of titanium components by MER Corp.65.  The process is shown 
schematically in Figure 28, along with a titanium deposit.  Plasma transferred arc 
was selected as a heat source for expected advantages in deposit purity, capital and 
operating cost, and build rate.  Tensile properties in PTA deposits comparable to 
cast, wrought and laser deposited Ti-6Al-4V alloy have been demonstrated.  Ti has 
been deposited on steel directly and with Ta, Nb, V or Ni intermediate layers.  Ti-6Al-
4V-WC cermet has also been deposited on Ti-6Al-4V to provide wear resistant 
surfaces on Ti alloy structures.  Near net shape preforms have been used to 
produce a variety of components. 
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Fig. 27  H&R Technologies’ Laser Flat Wire Deposition 64 

 

 
Fig. 28  Schematic of MER Corp. Plasma Transferred Arc SFF Fabrication Process and 

Deposited Ti-6Al-4V Alloy Preform.65 

 
5.4 Applications 
 
A list of new applications for titanium would be lengthy enough to deserve a 
dedicated study.  No attempt has been made at such a comprehensive list, 
other than for heavy duty vehicles1.  However, a few technology and 
applications papers from the Ti-2003 Conference are of interest to ground 
vehicles. 
• γ-TiAl turbocharger rotor has been used in the 1999 Mitsubishi Lancer Evolution VI, 

RS version used in racing applications. 66, 67 
• Laser deposition is also being used to fabricate performs for titanium forgings. 68 
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• A pilot plant has been commissioned for production of γ-TiAl engine valves.  The 
process uses cold wall crucible induction melting and centrifugal casting with 50 
valves / mold.  Molds use Nb inserts.  The system has capacity for 600,000 parts / 
year using one operator.  Over 200 casting trials have been performed on 10 
different valve types for 5 automotive companies.  Engine testing is planned. 69, 70 

• TiAl turbocharger rotors, using Howmet XD45, are being considered for mass 
production Daimler-Chrysler autos beginning in ‘05/’06, providing development and 
cost efforts are successful. 71 
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