Summary of Emerging Titanium Cost Reduction Technologies

A Study Performed For US Department of Energy And Oak Ridge National Laboratory Subcontract 4000023694

By:

EHKTechnologies 10917 SE Burlington Dr. Vancouver, WA 98664 Phone: 360-896-0031 Fax: 360-896-0032 www.ehktechnologies.com

Date Published: January 2004

Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Freedom Car and Vehicle Technologies, as part of the Heavy Vehicle Propulsion Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Contents

	Section	Page
1.0 2.0 3.0	List of Figures List of Tables Summary of Findings Introduction Conventional Processing	iii iii 1 5 7
0.0	 3.1 Titanium Raw Material – Sponge 3.2 Melting, Ingot and Slab Casting 3.2.1 Vacuum Arc Remelting 3.2.2 Cold Hearth Melting 3.2.3 Electroslag Remelting 	7 8 8 9 11
4.0	 3.3 Mill Processing of Bar, Plate and Strip Emerging Reduction Technologies 4.1 FFC / Cambridge Process 	11 12 12
	4.2 Armstrong Process	14
	4.3 MER Corporation 4.4 SRI International	16 16
	4.5 BHP Billiton	18
	4.6 Idaho Titanium Technologies	19
	4.7 Ginatta	20
	4.8 OS Process	21
	4.9 Millennium Chemical	22
	4.10 MIR – Chem	23
	4.11 CSIR	23
	4.12 Quebec (Rio Tinto) Iron and Titanium	23
	4.13 University of Tokyo, EMR / MSE Process	25
	4.14 University of Tokyo, Preform Reduction Process	26
	4.15 Vartech	27
	4.16 Northwest Institute for Non-Ferrous Metals	27
- 0	4.17 Idaho Research Foundation	28
5.0	Developing Alloy and Product Technologies	29
	5.1 Alloy Development	29
	5.2 Powder Consolidation5.3 Solid Freeform Fabrication	30 31
	5.4 Applications	33
6.0	References	35
7.0	Acknowledgements	39
8.0	Distribution	40
		10

List of Figures

	Figure	<u>Page</u>
1. 2.	Reduction in Process Steps by Emerging Reduction Technologies Relative Cost Factors for Conventional Mill Processing of 1" Ti Alloy	2
	Plate	7
3.	Overview of Titanium Sponge Production	8 9
4. 5.	Titanium Sponge Flow Diagram for Double Vacuum Arc Remelt Process for Titanium	9
5.	Ingot	10
6.	Schematic of Galt Alloys Plasma Arc Melting Process	10
7.	Slab Produced by Antares Electron Beam Furnace	10
8.	Schematic of ALD Vacuum Technologies Electroslag Remelting	
	Furnace with Inert Gas Atmosphere	11
9.	Schematic Description of the FFC-Cambridge Process	13
10.	Schematic Description of the FFC-Cambridge Process Reduction Step	13
11.	Armstrong / ITP Process Flow Diagram	15
12.	Schematic of the MER Composite Anode Process	17
13.	Titanium deposits in, a) Particulate, b) Flake, and c) Continuous form, produced by various salt compositions and operating conditions of the	
	MER Process	17
14.	Schematic of SRI International Ti Powder Production Process	18
15.	Ti-Si-V alloy deposited on 23 μ m Si spheres with the	
	SRI International Process	18
16.	Solidified Electrolyte and Ti Cathode from Ginatta Process	21
17.	Schematic of OS Calciothermic Process for TiO ₂ Reduction	22
18.	Basic Concept of QIT Electrolytic Ti Production	25
19.	Schematic of Okabe EMR / MSE Process	26
20.	Titanium Produced by the EMR / MSE Process	26
21.	Schematic of Okabe Preform Reduction Process	27
22.	Ti Powder Produced by the Okabe Preform Reduction Process in 6 hrs and Ca/Ti Ratio of 0.5	27
23.	Characteristics of Gum Metal	29
24.	STL File, E Beam Process and Finished SFF Part	32
25.	Complex Ti-6-4 Parts by Trumpf Laser Melting Technology	32
26.	AeroMet Laser Additive Manufacturing Using Powder	32
27.	H&R Technologies' Laser Flat Wire Deposition	33
28.	Schematic of MER Corp. Plasma Transferred Arc SFF Fabrication	
	Process and Deposited Ti-6AI-4V Alloy Preform	33

List of Tables

	<u>Table</u>	<u>Page</u>
1.	Summary of Emerging Reduction Technologies	4
2.	Summary of Ti Alloy Pressing Procedures from du Pont Patents	31

1.0 Summary of Findings

The purpose of this study was to investigate and summarize the development projects currently being carried out by organizations around the world on new technologies for production of titanium metal. Primary focus was on emerging technologies for reduction of titanium bearing oxides to titanium metal. Sixteen such reduction technology projects were identified and are described. While no claim is made that this list contains all such projects, it is believed to include a large majority of such efforts. Several additional technologies are reviewed which have recently been reported, and which may be of interest to vehicular applications. An initial section of this report provides a brief summary of the conventional technologies utilized currently for Ti production. This is included to provide a reference point for consideration of the implications of the emerging technologies for cost reduction. The emphasis on cost reduction technologies is on those with the potential to reduce the cost of final titanium products by very significant amounts on the order of 30%, 50% or more. This current study does not address the ongoing continuous improvement and innovation in present production technology which are expected to provide improvements on the order of 5% to perhaps 15%.

The ultimate commercial product of some of the emerging reduction technologies cannot be defined at this time. Some may be utilized to produce more than one product form; for example, a process may be optimized for production of either solid Ti or a granular or powder product. Nevertheless, the processes may be broadly grouped into those that will produce solid ingot, billet or slab, and those that will produce some form of sponge, granular or powder product. Figure 1 shows a general sequence of process steps for conventional production of titanium mill products using Vacuum Arc Melting. The Figure also shows the range of these process steps which would be replaced by various alternative technologies. The number of process steps replaced by the emerging technologies varies among the approaches, and in some cases has not been finally determined.

Production of a sponge product to be utilized as a replacement for Kroll sponge does not appear to have potential for large cost reduction. The processes which may provide sponge all use some form of halide electrolyte or metal reductant which would need to be separated from the product sponge. In addition, if the process does not utilize TiCl₄ for raw material purification, then another such process must be utilized. Any cost reduction from the current Na reduction of TiCl₄ could not be expected to yield final product cost reduction of more than 5 - 10%. Such a process could replace only up to a few steps in the conventional process route depicted in Figure 1.

Cold hearth melting technologies are described briefly in the Conventional Processing section of this report. These technologies are providing needed incremental improvement in the economics of production. Figure 1 shows that they replace many of the steps in conventional VAR processing, although for some applications VAR must still be utilized for final melt. In addition to fewer process steps, the quality of product may be improved when utilizing high scrap levels, which in itself is a cost reduction

measure. Finally, these processes may be used to produce rectangular blooms or slabs, which require fewer hot working operations, with the accompanying cost savings.

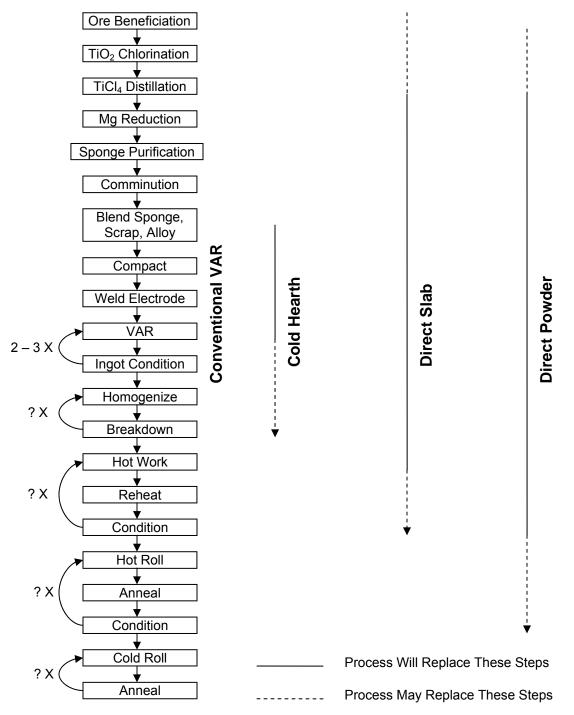


Fig. 1 Reduction in Process Steps By Emerging Reduction Technologies.

The group of emerging processes labeled "Direct Slab" in Figure 1 is those that either produces liquid, which can be cast into rectangular slab, or which directly produce solid slab. Depending on the process, these may replace several of the initial steps in the

Kroll Process. None of these processes are known to have round ingot as their target product, but are expected to produce rectangular bloom, billet or slab directly, in a single process sequence. In common with cold hearth, these processes would not require repeat cycles of any process step. The form of the final product will determine how far along the conventional process sequence these new technologies will provide replacement. General concerns with this class of process are: the degree of chemical homogeneity which is provided; the ability to provide complex, multi-element alloys within the chemistry tolerance required; the surface condition produced by some processes without the need for extensive conditioning.

The group of emerging technologies labeled "Direct Powder" in Figure 1 are those that have granules or powder as their target product. Not depicted in this Figure are any process steps that are required to purify the powder and further process it into useable form. This finished powder or granular material may be useable in several subsequent processes to produce final product. Titanium powder metallurgy is a very small industry due to both the high present cost of quality powder, the need for specialized facilities and processes to handle the reactive powder, and to contamination by residuals of binder removal. The new powder technologies can be expected to significantly lower powder cost, thus providing incentive to resolve the other issues. Powder or granules may also be utilized as feedstock for a variety of compaction and sintering processes with the objective of providing mill products such as sheet, strip, plate, bar, wire and forging preform. Very little work has been done, however, on utilization of powder for these downstream processes. Use of mixed CP titanium and elemental alloy blends for production of complex alloys has been demonstrated. The promise of a direct route to such finished products should provide incentive for development of these methods. Significant cost savings by replacement of a large number of process steps appears to be worth the effort. General concerns with this class of process include: the low level of experience in using powder to manufacture mill products; the reactivity of powder / granules during its use to make mill products.

As mentioned, sixteen development projects for new oxide reduction processes have been identified. Some are well known, while others have just been revealed. Table 1 lists these processes, the organization performing the development, and the general nature of the expected product. In some cases considerable detail has been obtained, while little has been released on some efforts. The Table presents the list in random order. The details of the processes which have been released are provided in the report. Some processes operate by reduction of a titanium halide. Many utilize some form of electrochemical reduction while still others rely on metallochemical or metallothermic reduction. References are provided in many cases for further study of the mechanisms. Many of the projects are in the very early stage of development so that optimization and scale up are many years in the future. Other efforts are reported to be either in the pilot stage or near to scale up. No opinions are expressed as to the likelihood of success of any of these processes. Sufficient insight has been gained, and progress demonstrated, however, to have confidence that some of the developments will succeed in commercialization. No attempt was made to be as comprehensive in investigating other groups of emerging titanium technologies. There are numerous efforts at developing new alloys with reduced cost through utilization of low cost master alloys. Strong effort continues on development of titanium intermetallics. Solid freeform fabrication of titanium is now being commercialized, especially for use to add stock to structures in order to reduce machining. Titanium continues to find new applications in industrial, consumer and vehicular applications as well as potential new defense applications. As the promise of significant cost reduction is realized through the emerging technologies discussed, as well as others to be disclosed, applications and substitution of titanium for other metals can be expected to increase.

Name / Organization	Process	Product(s)
FFC / Cambridge Univ. / Quinetig / TIMET	Electrolytic reduction of partially sintered TiO ₂ electrode in molten	Powder Block
	CaCl ₂	
Armstrong /	Liquid Na reduction of TiCl₄ vapor	Powder
International Ti Powder	An ada no duration of TiO transmost	Deveden Flehe en Oelid
MER Corp.	Anode reduction of TiO ₂ , transport	Powder, Flake or Solid
	through mixed halide electrolyte and deposition on cathode	Slab
SRI International	Fluidized bed reduction of Ti halide	Powder, Granule
BHP Billiton	No details available	NA
Idaho Titanium	Hydrogen reduction of TiCl ₄	Powder
Technologies	plasma	
GTT s.r.l. (Ginatta)	Electrolytic reduction of TiCl ₄ vapor	Liquid Ti, either tapped
	dissolved in molten electrolyte	or solidified as slab
OS (Ono / Suzuki;	Calciothermic reduction of TiO ₂	Powder / sponge
Kyoto Univ.)		
Millenium Chemical	No details available	Powder
MIR Chem	I ₂ reduction of TiO ₂ in "shaking reactor"	Particles
CSIR (S. Africa)	H ₂ reduction of TiCl ₄	Sponge
Quebec Fe & Ti (Rio Tinto)	Electrolytic reduction of Ti slag	Ti Liquid
EMR / MSE (Univ. of	Electrolytic cell between TiO ₂ and	Highly porous Ti powder
Tokyo)	liquid Ca alloy reduces TiO ₂	compact
Preform Reduction	Reduction of TiO ₂ reduction by Ca	Ti powder compact
Vartech	Gaseous reduction of TiCl ₄ vapor	Powder
Idaho Research	Mechanochemical Reduction of	Powder
Foundation	liquid TiCl₄	

 Table 1 Summary of Emerging Reduction Technologies

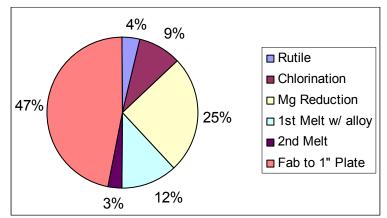
2.0 Introduction

Titanium is the ninth most abundant element, comprising 0.6% of the earth's crust. It is also the fourth most abundant structural material after aluminum (8.1%), iron (5.1%) and magnesium (2.1%). Of these four elements, only aluminum has a higher free energy for reduction of its oxide. Nevertheless, 1997 US titanium production, including scrap recycle, was only 48,000 metric tons, vs. 138,000 metric tons of Mg, 7.2 million metric tons of AI, and 99 million metric tons of steel. Inversely, prices (\$/metric ton) for these metals in '97 were \$9,656 (Ti sponge), \$3,460 (Mg), \$1,440 (AI) and \$625 (Steel).

The reason for this discrepancy in pricing and production volume is primarily due to the high reactivity of titanium. Titanium has a great affinity for oxygen, nitrogen, carbon and hydrogen. Even though the free energy of formation of TiO_2 is less than that of AI_2O_3 . no smelting process similar to that used for aluminum has been successful. The Kroll process and subsequent purification operations used for the majority of titanium production is energy, material and capital intensive, so that the sponge produced currently sells for \$3.50 – 4.00 per pound. Since approximately half of titanium production is used in aerospace applications, and these are the most profitable applications, the requirements of this industry have dominated production technology. Stringent property requirements dictate very low levels of microstructural defects. Melt processing in either vacuum or inert atmosphere is therefore required. Double and even triple melting sequences are common. Mill processing, such as conversion of ingot by hot rolling and forging can only be carried out in air, so that multiple conditioning steps (oxide and surface defect removal) are required. Yield loss and the cost of these conditioning operations can contribute half of the cost of plate and bar products. Final prices for titanium mill products consequently range from a low of ~\$8/lb to \$20/lb and sometimes much higher, depending on form, specification, quantity, alloy and the state of the aerospace economic cycle.

Efforts to reduce the cost of titanium products have continued practically uninterrupted since the beginning of the industry. Progress has been made in improving the efficiency of the conventional process route, and in development of some process alternatives. None of these efforts, however, have provided pricing approaching that of the competing materials. In recent years, there has been an acceleration of the interest in alternative routes to titanium product. Most of this effort is directed at alternatives to the use of ingots cast from double or triple vacuum arc remelted Kroll process sponge. Objectives include providing either lower cost billet / slab, or production of high quality powder at low cost. Lower cost slab has the potential to reduce product cost by both reduction of the casting cost, and elimination of ingot breakdown steps. Efforts to produce low cost powder may be viewed either as providing an alternative to sponge in the ingot/slab casting process, or to provide raw material for alternative routes to mill product and for conventional powder metallurgy.

The objective of this report is to review the efforts to develop new technology for titanium production. A summary of conventional technology is provided, along with description of some of the current improvement efforts. Sixteen approaches to


reduction of titanium oxides to pure and alloyed Ti have been found. These efforts are described in levels of detail which vary depending on the status of development, and the willingness of the developing organization to disclose information. Reluctance on the part of many firms is understandable considering the value of the intellectual property being developed and the competitive nature of the industry. Finally, some description is provided of technologies available or under development to convert the output of these new reduction processes into useable product.

Extensive effort has been expended in investigating the existence of the emerging technology efforts, and in obtaining meaningful details of the processes and products. While an attempt has been made to collect and to verify the information provided herein, no warranty can be provided that all of the information presented is entirely accurate. There are undoubtedly other activities which may have equal or superior promise for providing affordable titanium. Readers are invited to send any comments or additional information to the author.

This report may serve as an update for an earlier report that also focused on the opportunities for low cost titanium in heavy-duty vehicles.¹

3.0 Conventional Processing

In order to understand the importance and cost reduction potential of the emerging reduction and processing technologies, it is instructive to review the conventional production methods and the sources of high cost. Figure 1 includes a view of the sequence of operations normally used in titanium mill products production. For simplicity, this sequence uses Vacuum Arc Remelting as the melt process. It should be recognized that one of the cold hearth melting technologies may be used instead of or in conjunction with VAR. Nevertheless, this long sequence of process steps is currently required to produce quality titanium mill products. As with the mill processing of most metals, an iterative sequence of reductions and reheats is required. More than some metals, titanium normally requires many hot work and homogenization steps in order to produce desired chemical and microstructural uniformity. Many of these steps involve ingot, bloom, slab or plate conditioning which is required to remove surface contamination and roughness, with a resulting high yield loss. Figure 2 is an estimate of the relative cost factors for production of one inch titanium alloy plate, and serves to illustrate the sources of high cost.

3.1 Titanium Raw Metal - Sponge

Titanium metal for the production of mill products (sheet, strip, plate, bar, wire), castings and forgings has been made by essentially the same process since the start of the industry in the mid 20th century. The vast majority of this metal is made using a multistep process pioneered by Dr. Wilhelm J. Kroll in the 1930's.^{3, 4} Titanium originally comes from the ores Rutile (TiO₂; Anatase is a closely relative crystal structure), and llmenite (FeTiO₃). Ilmenite ores are used in Fe production, leaving a slag rich in TiO₂, which is normally upgraded for use in Ti production. Figure 3 is an overview of Dr. Kroll's process as practiced by one manufacturer today.

The steps in this process are:

1. Chlorination of TiO_2 with coke, by the fluidized bed reaction: TiO₂ + 2Cl₂ + C = TiCl₄ + CO₂ followed by distillation to purify the TiCl₄ of metallic impurities such as Fe, Cr, Ni, Mg, Mn.

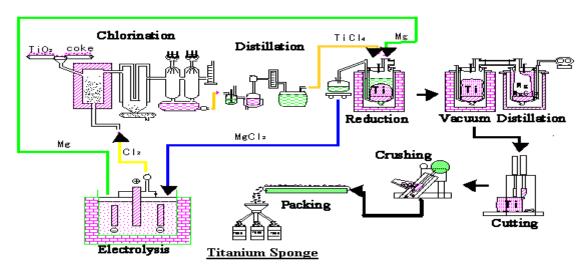


Fig. 3 Overview of Titanium Sponge Production ⁵

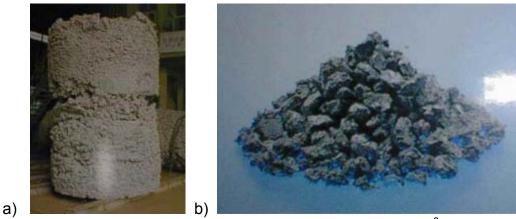
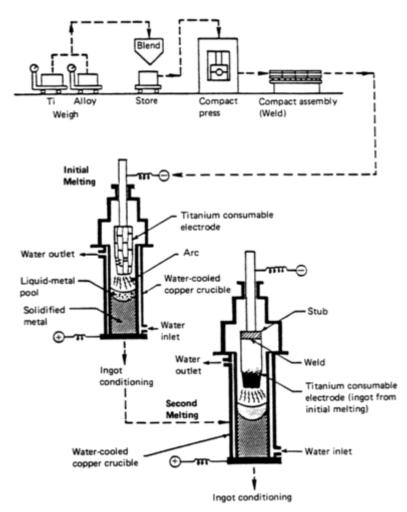
- Magnesium reduction of TiCl₄ in a sealed, inert gas filled retort according to the reaction: TiCl₄ + 2Mg = Ti + 2MgCl₂
 A furnace helps control the temperature of the exothermic reaction. Either solid Mg is melted, or liquid Mg is used, followed by controlled introduction of the TiCl₄.

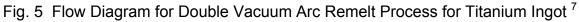
 Molten MgCl₂ is tapped from the retort periodically. After consumption of the Mg and final draining of MgCl₂, remaining Mg and MgCl₂ must be removed.
- 3. Vacuum distillation is the most prevalent method of removing impurities from the sponge. Other processes which are or have been used include He gas sweep followed by acid leaching, or simple acid leaching. In most cases, the sponge on the outside of the mass, next to the pot wall, is either left in place or discarded as a means of absorbing the iron and associated metals leached from the pot.
- 4. Comminution of the sponge mass, either before or after purification, is carried out by a series of boring, shearing, crushing and screening steps.

Examples of the sponge produced by this process are shown in Figure 4. Sponge is a primary raw material used in the melting operations producing ingot or slab. It is available in various grades, with varying levels of impurities.

3.2 Melting, Ingot and Slab Casting

3.2.1 Vacuum Arc Remelting (VAR): The conventional, and most common method for producing titanium ingot is the vacuum arc remelting process, depicted in Figure 5. As shown, titanium and alloy elements are blended to the desired composition. This blend may contain levels of scrap Ti (revert), which has been carefully controlled for composition and contamination. The blended material is then compacted and the compacts assembled with additional scrap and a stub, and welded to form an electrode.


Fig. 4 Ti sponge: a) before, and b) after crushing ⁶

The VAR furnace consists of a water cooled copper crucible, vacuum system, electrode drive and control system. Some operations utilize high frequency electrical coils around the furnace to induce magnetic stirring in the melt for improved homogeneity. The ingot from this first melt is conditioned by grinding to remove surface defects and contamination, is inverted and welded to a stub. A second vacuum arc remelt is normally used to improve homogeneity and dissolution of inclusions. Very high reliability applications such as turbine rotor components may use a third VAR. Only round ingots are produced by VAR. The ingots are conditioned again prior to conversion by grinding or turning to remove contamination and surface defects that could act as stress concentrations or crack initiators during subsequent hot working.

Sources of high cost in these processes include the labor intensive electrode preparation, multiple melt sequence and the intermediate and final conditioning with its attendant yield loss.

3.2.2 Cold Hearth Melting: Cold hearth melting, as its name implies, utilizes a water cooled copper hearth to contain a "skull" of solidified titanium, which in turn contains a pool of molten metal. Figure 6 shows a simplified view of one configuration using a gas plasma as the heat source (Plasma Arc Remelting – PAM). Other configurations of the process may use an electron beam as the heat source (Electron Beam Cold Hearth Melting – EBCHM). The figure shows only one pool for addition of material and homogenization, whereas there are often multiple pools for these functions, with multiple plasma or electron beam guns for precisely monitored and controlled heat input. Advantages of cold hearth melting include improved capability for scrap melting, improved process control and the ability to cast rectangular slabs in addition to round ingots. Improved scrap utilization involves removal of high density inclusions by gravity settling and entrapment in the mushy zone at the bottom of the molten pool. Figure 7 shows the rectangular slab produced by one electron beam facility. Efforts are underway to utilize cold hearth melting in a single melt operation for less critical applications. For high stress and fatigue inducing applications such as engine rotors. VAR melting may be required after cold hearth melting.

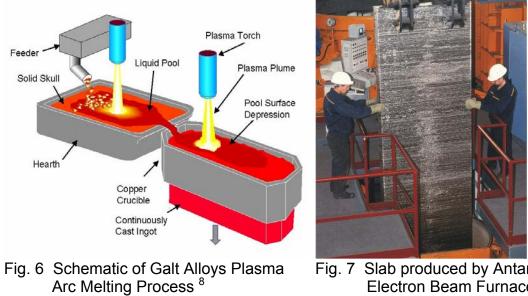
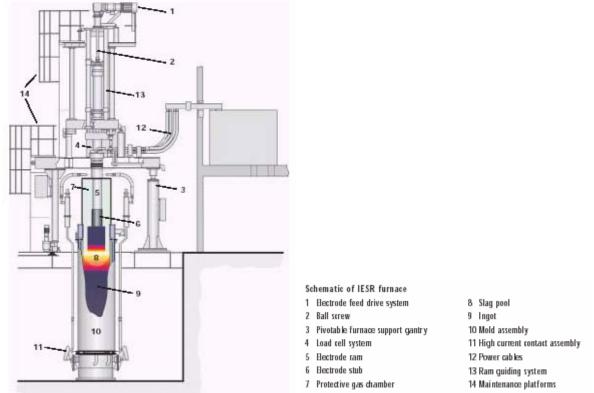



Fig. 7 Slab produced by Antares Electron Beam Furnace ⁹

3.2.3 Electroslag Remelting (ESR): ESR has been used for many years for production of tool steels, superalloys and heavy forging steel ingots. Like VAR, the process must start with a solid or fabricated electrode. Figure 8 shows one variant of an ESR furnace. The distinction of ESR from VAR is the use of a molten slag into which the electrode is dipped. As the bottom of the electrode melts, drops of liquid fall through the slag and into the molten metal pool at the bottom of the furnace. As the drops fall through the slag, they are refined, with removal of non-metallic impurities by chemical reaction with the slag. Solidification occurs essentially uni-directionally, eliminating central pipe, and providing improved homogeneity. Rectangular slabs are also now available from ESR furnaces.¹⁰

3.3 Mill Processing of Bar, Plate and Strip

When an ingot or slab is produced for use in mill products such as bar, plate and strip, it is processed through a sequence of operations such as is illustrated in Figure 1. The multiple breakdown, homogenization, reduction, reheat and conditioning iterations are complicated by the oxidation susceptibility of the material. Production of a hard and brittle oxygen stabilized alpha layer (alpha case), combined with surface defects requires frequent surface removal and trimming. These operations are costly and result in significant yield loss. These losses have been reduced to some extent in recent years by use of rectangular blooms and slabs rather than round ingot castings.

4.0 Emerging Reduction Technologies

It is apparent from the discussions above that if a process could be developed that would eliminate many of the process steps in conventional production of mill products, very large cost savings could be achieved. There have been a great variety of efforts over many years to achieve this goal, with near universal failure. In recent years, however, a variety of new approaches have been developed and effort has expanded, resulting in some promise of success. Sixteen current efforts at reduction of oxides to titanium metal or hydride have been identified, plus a new approach to cost reduction of the hydriding of scrap. The products of these processes range from liquid Ti which may be cast into rectangular slabs, to solid slab production, sponge like forms and powder. In most cases, current effort is focused on process development with a "CP" grade of material as the product. However, in most cases, claims of applicability to alloys have been made, or the expectation expressed. Little confirmation of flexibility to produce a wide variety of complex alloys directly has been provided. Fortunately, this is not likely to be a serious issue for processes producing powder as the ability to blend CP powder with master alloy powder and develop homogeneous structures has been repeatedly demonstrated. One unresolved issue for these powder production technologies is the treatment of the reaction product into powder of usable impurity level, particle size and morphology. For the slab producing technologies, the ability to produce an alloy slab of uniform thickness, chemical homogeneity and adequate surface smoothness to avoid excessive conditioning also remains to be demonstrated.

An initial attempt was made to categorize the identified technologies according to type of expected product. The variety of product forms, however, precluded this classification. Also, since there is no standard nomenclature for each process, an alphabetical listing was also impractical. The following list is therefore presented in a purely random order. Position in the sequence has no relation to any factor such as development status, size of the effort, development organization or any relationships of the author to any organization.

4.1 FFC / Cambridge Process: Cambridge Univ., QinetiQ, British Titanium, TIMET

<u>Process Description</u>: This process is most easily understood as the electrolytic reduction of solid TiO₂ which is immersed in a molten CaCl electrolyte. Figures 9 and 10 show the overall process and the reduction cell schematically. A TiO₂ powder is formed by conventional ceramic processing into a rectangular sintered cathode incorporating a conducting wire. This cathode is then immersed in the electrolyte with a graphite anode. Reportedly¹², removal of a small amount of oxygen from the electrically insulating rutile phase converts it into the highly conducting Magnelli phase (TiO_{2-x}). Continued electrolysis removes oxygen from the cathode, where it dissolves in the electrolyte and is then removed as O₂, CO or CO₂ at the anode. At the voltages used, no calcium is deposited. Process times are between 24 and 48 hours, with resulting oxygen levels below 1000ppm and N₂ of 5 – 20ppm. Longer processing times allow lower O₂ levels. Simultaneous reduction of several oxides has reportedly allowed production of Ti-6AI-4V alloy.

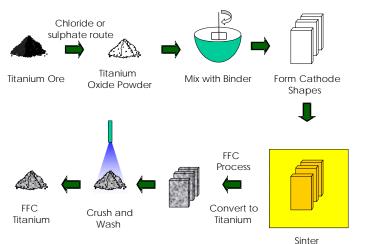


Fig. 9 Schematic Description of the FFC-Cambridge Process¹³

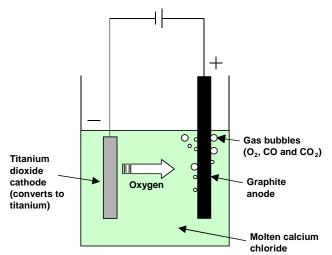
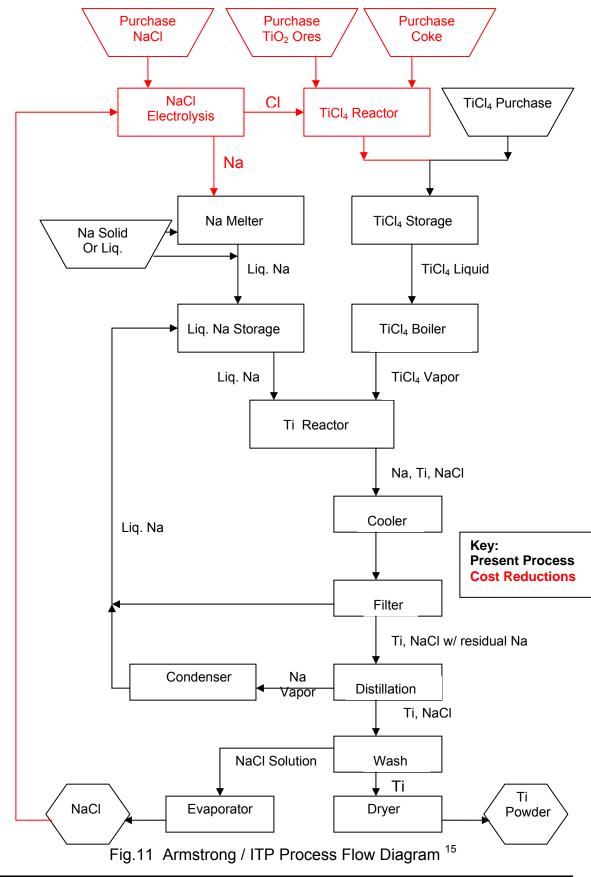


Fig. 10 Schematic Description of the FFC-Cambridge Process Reduction Step¹³

<u>Status</u>: A consortium consisting of TIMET, Cambridge University and QinetiQ, with additional team members Boeing and U.C. Berkeley has been awarded a contract from DARPA to develop and commercialize this process. QinetiQ has several 1kg cells operating and claims to be capable of producing powders of virtually any alloy. Powder size is approximately 100micron. Announced plans are to scale to commercial quantities in 2004.

<u>Concerns</u>: There has been considerable delay in moving to larger scale cells. In addition, little powder has been made available to outside entities in spite of announced intention to do so. Concern has been expressed over the electrolysis and chemistry fundamentals of the process. The cost of manufacture of the TiO_2 electrode, including cost of the TiO_2 itself, remains a concern, as does the cost of reduction of the reduced mass to usable powder. The long process time required to reduce the electrode to Ti metal also limits the potential for low cost.


4.2 Armstrong Process: International Titanium Powder

<u>Process Description</u>: This process produces Ti by the reduction of TiCl₄ with sodium, as does the Hunter process. However, ITP has devised a nearly continuous process in contrast to the batch mode of Hunter. A schematic of this process is shown in Figure 11. There are several key points which must be understood. The reaction is continuous and takes place in the "Ti Reactor." Liquid sodium is pumped through a cylindrical chamber containing a centerline second tube. TiCl₄ vapor is injected into the sodium stream through this inner tube/nozzle. Reaction occurs immediately downstream of the nozzle, with Ti powder being carried out in the excess Na stream. Ti, Na and NaCl are separated by filtration, distillation and washing. The powder produced has a purity level near to that of commercially pure Grade 1, including a Cl content of less than 50 ppm. The pilot plant with a full scale reactor has achieved oxygen levels less than 1000ppm. By simultaneous reduction of other metal chlorides, it is possible to produce alloy powders..

Figure 11 shows several recycle steps either in the present small scale and pilot plant, or envisioned for a future integrated plant. The Camano cost study¹⁴ also investigated this process and concluded that the "most probable" scenario produced Ti powder at near the present "cost" (should have stated "price") of sponge (3.54/lb). An "Optimistic" scenario, which includes recycling of NaCl and an integral TiCl4 reactor would produce powder at production cost of 2.15/lb. This latter scenario assumes that TiCl4 can be produced at a cost below its purchase price from outside vendors. These cost estimates, however, do not include the profit or SG&A required by a business enterprise. On the other hand, production of a quality Ti powder at this price level is a great improvement over the current cost of Ti powder, which may be in the range of \$20 –40/lb.

<u>Status</u>: ITP is in the process of running a pilot plant to refine operating parameters and separation techniques in a continuous mode. The Ti reactor is capable of operating at ~2 million pounds per year rate for one hour. Scale up beyond that level would involve larger tankage and multiple reactors of the same design. Economies of scale would likely come from integrating some of the auxiliary processes. Product from pilot production runs has been thoroughly tested and analyzed to characterize its quality, morphology, and particle size distribution. Downstream melt processors have tested and verified good performance of ITP powder samples. ITP is working with powder processors on both process and powder improvements to optimize the use of the company's powder in their processes.

<u>Concerns</u>: This process has been demonstrated to produce useable powder, and is close to commercialization. Remaining issues include demonstrating equipment durability, optimization of the separation equipment, and determining the capital cost of a fully integrated plant. Development of the processes to be used for producing the particle size and morphology required for product applications must be completed, and their cost determined.

4.3 MER Corporation

Process Description: MER has developed an electrolytic reduction process which is significantly different than others. This process utilizes an anode comprised of TiO_2 plus a reducing agent, and an electrolyte of possibly mixed fused halides. Related background of the anode technology, applied to Mg and Al is provided in a set of expired patents. ¹⁶ A schematic of the process is shown in Figure 12¹⁷. TiO₂ or Rutile powders are mixed with carbonaceous material and binder, molded into electrode form and heat treated to form a composite anode. Ilmenite could be used for iron containing alloys if the other impurities could be tolerated. The composite anode contains a reduced TiO₂ compound as Ti_xO_y-C. Ti+3 ions are released into the electrolyte, are further reduced and deposit as Ti solid on the cathode. A CO / CO₂ mixture is released at the anode. The Ti can be deposited as powder, flake or a solid deposit as shown in Figure 13. The form of the deposit is determined by salt composition and operating conditions. Powder with particle size from 1 to 125 micrometer has been produced, and larger particles are believed possible. The mean particle size can be controlled by process conditions, but the achievable particle size distribution for any one mean size has not been determined. An alternative to producing powder is the direct production of solid form (Fig.13, c)). The density of this solid form has not been reported. However, after some intermediate treatment, could conceivably be subsequently worked by conventional mill processes, avoiding the melting and ingot breakdown steps. Status: MER has been awarded a DARPA contract for development of the process. One objective of this project is to produce billet with 300 – 500 ppm oxygen, suitable for mill processing. Current cell size or production rate is not known. Other team members in this contract are not known.

<u>Concerns</u>: While impurities are reported to be low, analytical confirmation is necessary. Processing cost needs to be determined. Consistent production of any particular product form remains to be demonstrated. Deposition of solid deposits with density, uniformity and configuration suitable for mill processing needs to be confirmed. As with most of the emerging processes, scale up, product acceptability and economics need to be developed.

4.4 SRI International 18

<u>Process Description</u>: This process utilizes a high temperature fluidized bed to convert TiCl₄ and other metal chlorides to Ti or alloy which is deposited on a particulate substrate of the same material ¹⁸ Particle size is flexible from microns to over 1mm diameter. Particle size distribution is reported to be narrow, and appears to depend on the particulate substrate feedstock. One experimental run of this process during laboratory exploration experiments, using Al₂O₃ particles as a substrate is shown schematically in Figure14. Product of a different run using Si microspheres as substrate is shown in Figure15. Eventual production of Ti powder would use any Ti or Ti alloy particulate substrate. This substrate would be produced by crushing about 1% of the product to smaller size and fed back into the reactor. Feasibility of alloy production has been demonstrated. Recent effort has focused on equilibrium calculations required to define the optimum experimental conditions for deposition of Ti and Ti-Al-V alloys.

Control of impurities is expected to be excellent, with purity analysis being investigated. Alloy of broad chemistry, including many metals may reportedly be produced.

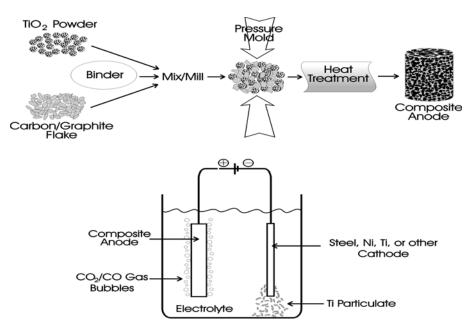
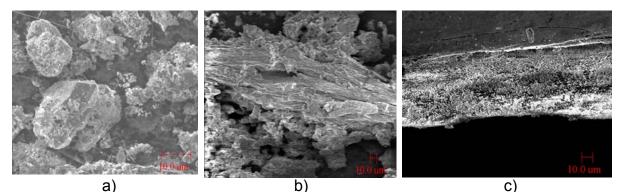
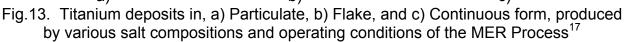




Fig. 12 Schematic of the MER Composite Anode Process¹⁷

<u>Status</u>: The process is in early lab stage of investigation. SRI has been awarded a DARPA contract for development. Near term efforts will focus on: study of composition and microstructure of metal powders, rates of growth, and extent of reaction; purity (O, C, N) analysis; continued work exploring agglomeration in larger, taller beds; study of products recycling and/or disposal; reactor design; cost; production of powders for testing. At present there are no other participants on this team. However, discussions are being held with major players. Bench scale effort is scheduled for 2004, with pilot plant construction and operation during 2004-2006, and industrial production beginning in 2006.

<u>Concerns</u>: The economics of production in view of the need for particulate substrate, use of $TiCl_4$, and the unknown energy efficiency vs. deposition rate must be determined.

Chemical Vapor Deposition-Fluidized Bed Reactor

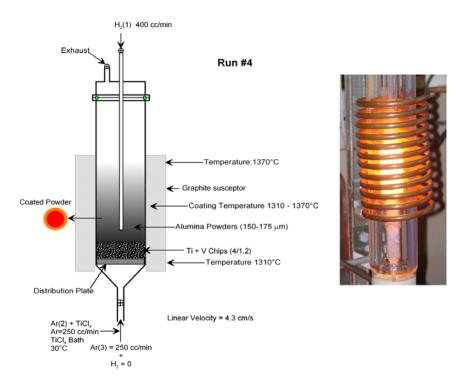


Fig. 14 Schematic of SRI International Ti Powder Production Process.

Fig. 15 Ti-Si-V alloy deposited on 23 μ m Si spheres with the SRI International Process.

4.5 BHP Billiton ¹⁹

<u>Process Description</u>: BHP Billiton is the world's largest diversified resources company. They are an industry leader or are in near industry leader positions in major commodity businesses, including aluminium, energy coal and metallurgical coal, copper, ferroalloys, iron ore and titanium minerals, and have substantial interests in oil, gas, liquefied natural gas, nickel, diamonds and silver. This includes extensive expertise in mineral sands extraction, beneficiation, and in steel, aluminum and copper production. Little has been publicly released on the BHPB process development. Their process is announced to be based on the electrolytic reduction of TiO₂ in a CaCl₂ based bath. They are expending significant effort on understanding the fundamentals of the process. Their aim is to achieve commercial production by 2009.

<u>Status</u>: Present scale of this process is designed to prove feasibility and understanding of process fundamentals. Small quantities of titanium metal have been produced. A 1kg/hr sub-pilot scale facility is currently being built which will prove the feasibility of their production concept, provide additional process fundamental understanding and provide engineering data for design of a production facility. It will also provide sufficient material to fully develop the auxiliary processes including fabrication. The sub-pilot facility is expected to be completed by early 2004.

<u>Concerns</u>: As with all of the electrolytic processes in molten salt, initial concerns involve the ability to achieve very low levels of chloride. Economic achievement of adequate oxygen levels is also to be demonstrated. Also as with all of the emerging reduction technologies, the economics of the overall process remains to be demonstrated. The BHP Billiton approach is understood to differ substantially from other EDO processes and the 2009 target date is believed to be feasible.

4.6 Idaho Titanium Technologies – Titanium Hydride Powder ²⁰

<u>Process Description</u>: ITT is the licensee for Ti applications from Plasma Quench Technologies Inc. the patent holder of the basic technology which was spun out of INEL in 1994. This process involves the thermal dissociation and reduction of TiCl₄. To accomplish this, it passes TiCl₄ through an electric arc in a vacuum chamber, which heats the vapor to over 4000°K forming a plasma. A stream of hydrogen carries the gas through a Delaval nozzle, where it expands and cools. The combined effect of rapid cooling (quenching), the reducing effect of hydrogen and formation of HCl prevent back reaction of the Ti and Cl. A very fine hydride powder is therefore produced by the basic reaction.

<u>Status</u>: ITT has been working on a NIST ATP grant (10/1/01-9/31/04) to develop the technology to increase this particle size to the range of 50-300micrometers, where it can be used in more conventional powder metallurgy based processing. As of this report, success has been achieved in producing spherical, apparently non-porous, powder in the 1 – 10 micrometer range with "narrow" particle size distribution. The developers believe particle size can be manipulated as desired. No impurity analysis is available. However, due to the use of a closed system and inclusion of hydrogen in the process, oxygen is claimed to be very low. Likewise chlorides are believed to be very low. Remaining chlorides are expected to be removed in subsequent vacuum sintering. No consideration has been given to production of alloy powders. Powder is expected to be available for testing by early Fall 2003. The new technology maintains the continuous mode of process operation, and the ability to start and stop production at will. Simultaneous to addressing the particle size issue, the reactor durability and energy efficiency have been improved. Current production rate capability is 40lb. / hr.

Cost factors which are claimed for this process include simple and therefore low cost equipment and low labor content. Prior to the current improvements, Camanoe ¹⁴estimated the "process cost" at mid-value, or "likely current" scenario, cost of ~\$3.26 / Ib., just below the recent world market price for sponge. To this must be added normal

business costs, which normally add up to 40% to manufacturing costs. The effect of recent process changes on cost is unknown.

<u>Concerns</u>: The product of this process, being a hydride, may have advantages in powder metallurgy manufacturing of some discrete components; it will be of limited use, however, without dehydriding, for production of general mill products. Use of TiCl₄, while providing a purification method, also places a cost burden on the process, which some other technologies are seeking to eliminate. While previous serious concern about small particle size has apparently been successfully addressed, the goals of the NIST program for 50-300micrometers is consistent with industry need, and needs to be demonstrated. Likewise, careful analysis of impurity levels is required to meet commercial needs. To achieve minimum cost, the HCI product of the reaction must be economically recycled or sold.

4.7 Ginatta

Process Description: Dr. Ginatta developed the fundamentals of this process as a thesis at Colorado School of Mines, and has continued development through several different production concepts. In the 1980's methods were developed to electrolytically produce solid Ti deposited on cathodes which were periodically removed, thereby providing a continuous process.^{21, 22} This technology was supported in part by and licensed to RMI from 1985 to 1991. It reportedly reached production of 70 tons / year in 1985.²³ Engineering issues related to multivalency and liquid metal production resulted in high production cost. In 1992, these issues and a market downturn caused RMI to withdraw from the project. Various issues with this earlier technology were addressed by Ginatta, resulting in a new concept which produces Ti liquid. 24-26 This is an electrolytic process, in which TiCl₄ vapor is injected into a halide electrolyte where it is absorbed. A "multilayer cathodic interphase" separates the molten Ti cathode from the electrolyte. This multilayer phase consists of ions of K, Ca, Ti, Cl, F and some elemental K and Ca. The layers contain various oxidation states of the species, with the bottom layer producing liquid Ti, which falls to the molten pool. Ti is contained by a water cooled Cu crucible, so that a frozen layer of Ti at the bottom and slag around the electrolyte provide insulation and protection from halides. Reportedly, solid scrap Ti and alloying elements can be introduced either through solution in the TiCl₄, or by solid metering via a screw feeder. The solid Ti layer may be allowed to grow either within a fixed cell geometry, or by using a movable hearth. In either case, the hearth is lowered and the solidified slab and electrolyte may be removed, as shown in Figure 16. Start up time for a subsequent batch is reported to be only 6 minutes.²⁷ Another claim of this technology allows liquid Ti to be tapped from the reaction vessel into a separate chamber. In this configuration, one could envision its use to provide liquid metal for castings, or to feed a succession of slab or billet molds. In such case, it could be considered a continuous process.

Fig. 16 Solidified Electrolyte and Ti Cathode from Ginatta Process. ²⁶

<u>Status</u>: The current pilot plant produces 250mm diameter ingot. Production of slabs 1 x 4×0.5 meter is being considered.

<u>Concerns</u>: The process is quite complex, so is not likely to be duplicated by others. The engineering issues which forced closure of the earlier effort are reported to be not as severe in the current high temperature cell. Confirmation of the product quality would be advisable. The use of TiCl₄ is a limiting factor on cost reduction if its production is not integrated into the process. Likewise, Cl gas must either be disposed, sold or recycled. No cost study appears to be available. If operated in the batch mode, start up and shut down costs would add to production cost. If operated in the liquid feed mode, the ability to start and stop the liquid stream needs to be demonstrated. The ability to add alloy elements or scrap and achieve a uniform solid appears very difficult; in a liquid feed mode, a steady state composition may be achievable, but this too must be demonstrated.

4.8 OS Process

<u>Process Description</u>: Professors Suzuki and Ono of Kyoto University have investigated the details of the calciothermic reduction of TiO_2 and developed a process for Ti production that is proceeding toward commercialization. In their most recent publications²⁸⁻³² they provide details of the mechanism of reduction of TiO_2 in Ca / CaO / CaCl₂ solution baths. A schematic diagram of an experimental setup for practicing the process is shown in Figure 17. At 1173°K, CaCl₂ can dissolve 3.9 mole % Ca, but about 20 mole % CaO. Electrolysis is carried out above the decomposition voltage of CaO, but below that of CaCl₂. In this process, Ca⁺² is reduced to Ca at the cathode, and O₂ is produced at the anode, combining with C to form CO / CO₂. It was found that when TiO₂ particles are in contact with the cathode, low oxygen Ti can be produced, whereas if the particles are electrically isolated, only suboxides are produced. This behavior is attributed, at least in part, to the high concentration of Ca on the cathode. 2000 ppm oxygen was achieved in 3 hours, 420 ppm oxygen was achieved in 24 hrs, and less than 100 ppm was achievable, at presumably longer times. Product of the reduction is lightly sintered granules. Optimum bath composition was found to be a

CaO composition in the range 1-6 mole %; higher CaO contents were found to slow reduction due to slower dissolution of the CaO reaction product. A cell design for continuous production of Ti has been proposed, and the possible use of inert anodes discussed. Formation of powdery carbon at startup of the bath was described, and attributed to initial Ca reduction of dissolved CO₂. After startup, carbon is deposited only at the anode.

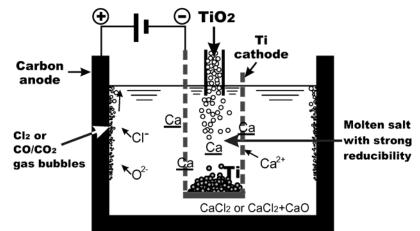


Fig. 17 Schematic of OS Calciothermic Process for TiO₂ Reduction. ²⁹

<u>Status</u>: Industrial application of the process has begun in collaboration with a Japanese aluminum smelting company. However, it is reported to require solution of many issues before quality product is available on a large scale. Operation of a "mud" covered bath in air has succeeded in preserving the reduced Ca. Ti production in this bath is being addressed.

<u>Concerns</u>: The production of low oxygen Ti in reasonable times and moderate cost with this process appears feasible. However, separation of the Ti product from the bath constituents, and purification to very low CI level is still being addressed. In addition, the processing of the Ti lump into usable form, other than as melt process feed has also not been addressed. These operations could add considerably to cost. Finally, the reduction has been discussed as a purely calciothermic process. However, the possibility of involvement of electrolytic reduction of suboxides produced by the calciothermic process has not been addressed.

4.9 Millennium Chemical 33

<u>Process Description</u>: Millennium Chemical is the world's second-largest producer of titanium dioxide (TiO2) and the largest merchant seller of titanium tetrachloride (TiCl4) in North America and Europe. As such, they have a strong position in intermediate feedstock for both TiCl4 and TiO2 based Ti metal production processes. Millennium is investigating options that allow it to vertically integrate from its position into a producer of titanium metal products. They are developing a process that produces Ti and Ti alloy powder.

<u>Status</u>: No details of the process or its current status are available. No announcement is expected before about mid 2004.

<u>Concerns</u>: It is difficult to formulate concerns until more is known of the process.

4.10 MIR-Chem

<u>Process Description</u>: Little is published on the collaboration of MIR-Chem and the University of Bremen. According to a July 2003 presentation at the Ti-2003 Conference in Hamburg³⁴, this group is developing a process based on the equation:

$$TiO_2 + 2I_2 + 2CO = TiI_2 + 2CO_2$$

The process is carried out on titania granules held in a "shaking reactor," where oscillating patterns of particles, similar in appearance to moiré patterns, occur. This quasiperiodic pattern, termed a Faraday hydrodynamic instability, is the parametric excitation of surface waves via vertical oscillations of a flat bottomed-container filled with liquid. As a result, patterns appear on the surface, and in the case of a slurry, induces the pattern in the particles. High energy impact between particles provides the energy required for the reaction to proceed. The reaction mechanism is also termed a "tribo-chemical reaction." In the formation of Til₂, the process dwell time is on the order of four days. Following this reaction, Til₂ is thermally dissociated to Ti and I_2 , and the iodine recycled. More details may be available in the printed version of this paper. <u>Status</u>: Unknown

<u>Concerns</u>: The dwell time of this process may appear very long for achievement of low cost. No data is available at present on product characteristics or projected cost.

4.11 CSIR 35

<u>Process Description</u>: South Africa is one of the primary suppliers of titanium ores. As such, it has a strong interest in promoting use of titanium, and in increasing the added value of its minerals. CSIR is a South African science council operating as a market-oriented contract and consortium research partner to its clients and stakeholders. It has developed the fundamentals of a process to produce Ti from TiCl₄ and hydrogen as a reductant. Pure Ti in sponge form is planned as the product. Preliminary cost estimates indicate pricing competitive with the minimum production costs of Ti sponge via existing Kroll plants.

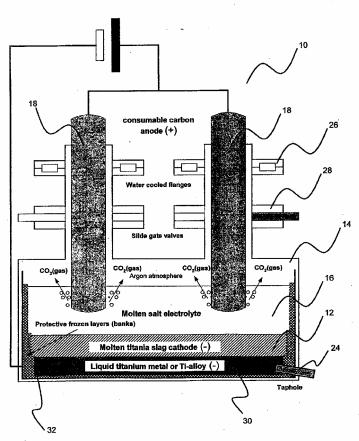
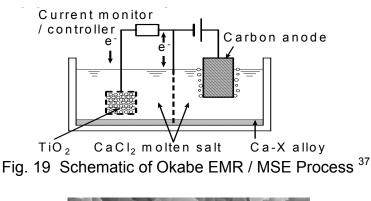
<u>Status</u>: Proof of concept experimental work has been completed and preliminary patents filed. CSIR is also planning a consortium to develop titanium metal technology, and are anticipating approval of funding for the first phase of that development. <u>Concerns</u>: It is too early in development to understand the concerns that should be addressed. Further understanding of the product and cost will be necessary to determine if the product will compete with Kroll sponge or the other new emerging technologies.

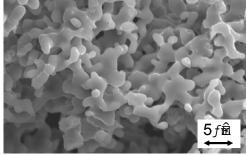
4.12 Quebec (Rio Tinto) Iron and Titanium

<u>Process Description</u>: Québec Iron and Titanium (QIT) with mining and smelting operations in Québec, Canada is recognized as a world producer of titania slags (Sorelslag, and UGS). QIT along with Richards Bay Minerals (RBM) with operations in South Africa insure a leading position of their parent company RIO TINTO in the TiO2

business. They have recently filed an International Patent Application³⁶ for the electrolytic conversion of titanium slag to Ti metal. The concept is shown from the patent application in Figure 18. The product of the process is liquid Ti, which may be cast into ingots, billets or molds. There are several variations of this concept, with different electrolytes, anodes and methods of operation. However, the primary concept consists of pouring molten salt electrolyte, such as CaF₂ into the chamber, then pouring in molten titanium slag which is allowed to settle below the electrolyte, followed by electrolysis. Solid electrolyte, slag and metal forms a self-lining protective skull on the walls and floor of the cell. This skull is a key feature of the process which solves the containment issue for such a corrosive combination melt. This practice is used in their large Electric Arc Furnaces (EAF) for smelting ilmenite. The electrolysis may be carried out in one or two steps. In the two step process, the first electrolysis step purifies the slag by removal of less reactive species such as Fe, Cr, Mn, V etc. Droplets form at the electrolyte / slag cathode interface, and due to density difference, fall to the chamber floor. This metal mixture collects and is removed through a tap hole. After this reaction is complete, the second step, operated at a higher temperature, electrolyzes the Ti from the slag, which also collects at the chamber floor and is removed through the tap hole. If the process is performed in only one electrolysis step a mixture of titania slag (Sorelslag) and upgraded titania slag (UGS) is used insuring that the total iron content is sufficiently low (1.4 wt.% FeO) to avoid requiring its removal. Otherwise, operation of the process is as described above. Molten titania slag can be supplied continuously to the chamber either by connecting the electrolyzer to an operating EAF without exposing the molten titania slag to the atmosphere or by feeding solid titania slag to the melt during continuous operation. Since many new low cost alloys for automotive and other markets have substantial iron content, this Fe level is no longer an issue. Other metal oxides may be added to the melt to obtain various alloys. For example, alumina and vanadium pentoxide may be added in order to obtain ASTM grade 5 (Ti-6AI-4V). Quality of titanium ingots is measured using the standard used to gualify titanium ingots (e.g., ASTM B265) as a main reference.

<u>Status</u>: Considerable work has apparently been done on the QIT process. Since data is included in the application for a variety of cell designs and operating modes, the final process configuration is based on multiple iterations of design concepts. No information is available, however, on current production capacity or plans for commercialization. <u>Concerns</u>: As with other emerging processes, repeated demonstration of compositional control and other quality measures will be necessary. No cost analysis of the process is available.


Fig. 18 Basic Concept of QIT Electrolytic Ti Production³⁶

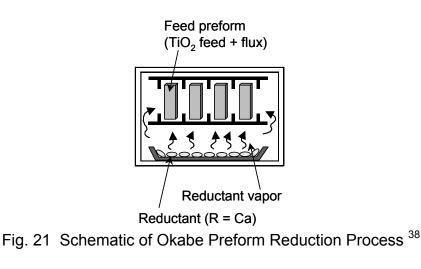

4.13 EMR/MSE Process (University of Tokyo): Electronically Mediated Reaction / Molten Salt Electrolysis ³⁷

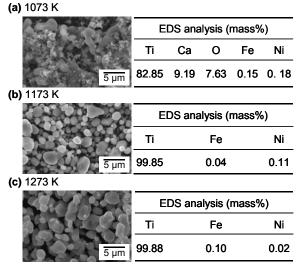
(Prof. T. Okabe is a graduate of Kyoto University, where he studied under Prof. Ono [see OS Process]. His own group at Tokyo now studies electrochemical and metallothermic processing. He has developed two new processes for TiO₂ reduction.)

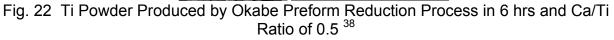
<u>Process Description</u>: This process is shown schematically in Figure 19. TiO_2 powder or a preform is placed in a holder shown on the left side. A Ca + 18 mass % Ni alloy is placed in the bottom of the reactor, and a carbon anode is provided. During the reduction step, no current is provided to the carbon anode, but an electrochemical cell forms between the TiO_2 cathode and the Ca alloy "reductant." During this phase of the process cycle, TiO_2 is reduced and Ca ions are formed. Pure titanium is reported to be produced. Results on trials simulating the left (reduction) side of the cell have been conducted and produced titanium with impurity levels on the order of 0.15 - 0.2 wt.% Ca, 0.2 - 0.5 Fe, .04 - .16 Ni and .35 - .65 O₂. Process times were on the order of 2 to 4 hours. Microstructure of the Ti produced is shown in Figure 20. Interestingly, only about 5% of the charge necessary to reduce the TiO_2 present actually passed through the circuit. The mechanism of the process is under discussion.

The right side of the cell in Figure 19 is conceived as being operated at different times than the reduction occurring on the left side. At such times, Ca ions are expected to be reduced and the Ca alloy replenished.

<u>Status</u>: The process is in early stages of development. Reaction mechanisms are not determined.


<u>Concerns</u>: Until the current mechanism uncertainties are resolved and more work is done on the complete process, no assessment may be made.


4.14 Preform Reduction Process (University of Tokyo) 38


<u>Process Description</u>: This process, also under development by Prof. Okabe, is shown schematically in Figure 21. TiO_2 and a flux of either CaO or CaCl₂ are formed into a preform and held with minimal contact in the space above a bath of molten Ca metal. The vapor (and flux?) react with the TiO_2 , leaving Ti and CaO. Leaching and washing of the product produce titanium such as shown in Figure 22. Other temperature, fluxes and flux / TiO_2 ratios produced different powder size and morphologies. Ca content of the final product has not been sufficiently reported. Oxygen content is on the order of 2800 ppm. The mechanism of this process is under investigation.

Status: This process is in the early stages of development.

<u>Concerns</u>: Achievable oxygen and Ca contents need to be determined. Since the reaction is highly exothermic, adequate temperature control may make scale up of the process difficult. Concentration of reaction products and their recycle could be costly. No overall cost estimate is available.

4.15 Vartech, Inc. 39

Vartech has received a Missile Defense Agency SBIR contract to develop a vapor phase process to produce titanium powder. The process uses $TiCl_4$ vapor and a gaseous reducing agent reacted in an inert atmosphere. The key objective of the project is to make powders at a "cost" of 3 - 5 / Ib in large quantities. The process is in early stages of development and no additional details are available. It is therefore not possible to further describe the process, its status or concerns.

4.16 Northwest Inst. for Non-Ferrous Metals (NIN) – China 40

<u>Process Description</u>: NIN is working to reduce the cost of hydride / dehydride powder made either from sponge, ingot or scrap. This effort is therefore not a new reduction technology, but is included here as an additional, or perhaps complimentary cost reduction process. Two approaches are being pursued. In the first, process efficiency

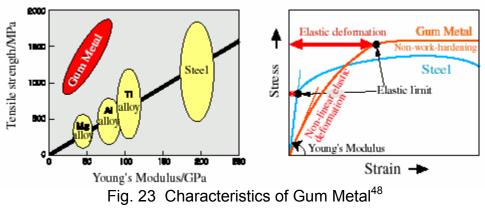
efforts such as fast crushing, automatic grading, gas protection and fast hydriding are being developed. The second effort is in developing a "motive HDH" process in which the material being hydrided is simultaneously being attrited to break up the 20 – 30 μ m diffusion layer and thus speed the process. Combination of these approaches is expected to reduce process cost from ~\$12.5 – 16.3/kg down to ~\$2.4 – 2.9/kg. <u>Status</u>: Pilot facilities are scheduled to be tested

<u>Concerns</u>: There is some concern with methods of raw material preparation. Success of the other new Ti reduction technologies could either make this process redundant, or could be viewed as candidates for application of the technology for comminution of their process product.

4.17 Idaho Research Foundation 41

<u>Process Description</u>: This process has been termed "Mechanochemical Processing," since the reaction is energized by the mechanical energy of particle impingement by milling media, rather than by thermal energy. Powders such as magnesium or calcium metal, or their hydrides are placed in a milling apparatus such as ball, rod or attrition mill along with TiCl₄ liquid. Milling reportedly promotes the solid state chemical reaction. Calcium hydride is preferred as the product is Ti hydride. Patent data shows that Al and V chlorides may also be utilized to produce alloy powder.

<u>Status</u>: The concept has been demonstrated and the process is in the research stage. <u>Concerns</u>: Use of TiCl₄ and other chlorides, and metallic or hydride reductant may lead to high cost. The ability to scale up to large quantity production would need to be demonstrated.


5.0 Developing Alloy and Product Technologies

A great variety of activities are taking place worldwide on many subjects related to reducing the cost of processing titanium, developing lower cost alloys and in applications technology. Only a few such activities will be discussed here, and the discussion will focus mainly on those topics of interest to vehicular and industrial applications. Discussion is limited to providing only a few of the key points available at the present time. Several recent or upcoming publications are of interest to those in this field. ⁴²⁻⁴⁵

5.1 Alloy Development

- Comparison of ingot and PM routes to production of a Ti-10V-2Fe-3Al alloy showed that while UTS was similar, tensile elongation was higher for the PM approach, and tensile property variability was reduced by 40-60%. This finding has important implications for establishment of design allowables.
- A particulate reinforced alloy, Ti-6AI-4V-2Mo-1Fe+10vol.% TiB₂, has been developed for engine valve applications. Processing uses hydride Ti powder, master alloys and boride particles. High matrix-boride coherence, in part due to close CTE match, produces double the fatigue strength of ordinary Ti alloys, with low wear and increased elastic constant. Valve use is limited to intake position due to temperature limits. ~0.5 million valves have been used in the Toyota Alzeta; high cost has limited further use. ⁴⁷
- A new type of alloy, termed "Gum Metal," has been developed with the following characteristics, and as illustrated in Figure 23:⁴⁸
 - o Extremely low elastic modulus with extremely high strength
 - Super-elasticity, capable of enormous elastic deformation exceeding 2.5%, displaying non-linear elastic deformation behavior (Hooke's Law does not hold true).
 - Super-plasticity that allows cold working of 99.9% or more without workhardening.

Composition is Ti + 25 mole % (Ta, Nb, V) + (Zr, Hf, O) and fabrication is via compaction of elemental powders. Applications include automotive springs, seals, diaphragms, medical and consumer products.

- A new alloy for improved oxidation resistance and reduced cost has been developed for exhaust system applications.⁴⁹ Composition was optimized at 1.5% Al on a CP Grade 1 base. Objectives included workability equal to Gr 2, with high temperature strength and heat resistance greater than Gr 2. Ultimate and 0.2% yield strength are greater than Gr 2, with 0.2% proof stress equal to 304 stainless steel below 400°C. Oxidation is only 2/3 that of Gr 2 at 700°C. Strip has been made into welded tube, with less property degradation than Gr 2. For heat exchanger applications, it has hydrogen resistance superior to Gr 2.
- A low cost α/βalloy with improved machinability and properties equivalent to Ti-6Al-4V has been developed. Cost was reduced by design of the alloy to utilize scrap and low cost master alloy in a single electron beam melt process. Target applications include automotive forgings, armor and land based structures. ⁵⁰

5.2 Powder Consolidation

A majority of the emerging reduction technologies described in Section 4 are designed to produce powder. This powder may be usable in the existing titanium powder metallurgy industry. PM, however, represents only a few percent of the overall titanium industry. The reason is only partially explained by the high cost of current quality powders. Very few PM companies provide titanium parts. Explanations for this have included the high cost of powder, lack of familiarity by designers, inadequate sintering facilities and binder systems that result in high interstitial content in finished parts. Reference 1 describes activities by ADMA and Dynamet Technologies to develop powder based titanium business, which has been increasing. A recent review⁵¹ of approaches such as these provides additional insight. It has also been reported that Advanced Forming Technology, a unit of Precision Castparts, is preparing to provide commercial titanium PM products.⁵² Availability of new, high quality, lower cost powders can be expected to have a positive influence on the Ti PM industry, but the other factors are likely to restrict the rate of growth.

Little work has been done on methods of using powder to develop alternative routes to products such as bar, wire, sheet, plate and forgings. However, there appears to be considerable promise for significant cost reduction by process routes that avoid the costs of conventional melt and mill processing. Figure 2, above showed an estimate of the relative contributions of process steps to the cost of plate, and Figure 1 showed the reduction in process steps conceivable with the emerging direct reduction powder processes. The process arrow for direct powder, however, includes processes yet to be developed for consolidation and forming of powders into plate or sheet which can be rolled and heat treated to the desired end product. Even less attention has been given to use of these powders to reduce the cost of extrusions and forgings.

Work in the 1950's and 1960's at du Pont Company⁵³⁻⁵⁷ demonstrated the feasibility of producing titanium plate, sheet and bar from powder. That work was abandoned, however, when welding was attempted on the resulting product without success. It was concluded that in order for this set of processes to be viable, chloride levels in the powder would need to be below 0.005% (50ppm), whereas available powders had

chloride in the range of 0.01 to 0.05%.⁵⁸ du Pont also found that successful compaction required irregularly shaped particles rather than the spherical particles preferred by molding processes. Table 2 provides a summary of some of this work.

Blend Initial Partial		Intermed.	Anneal	Final Cold	Final	
(m=mesh;	Forming	Homogeniz.	Reduction	/ iniou	Reduction	Homogeniz.
6-4=Note)	(tsi=tons/in ²)	U				J.
.85 -60m Ti;	Direct to	15min	To 0.010"	30min	To 0.003"	900°C, 1hr
.15 -270m 6-4	0.060" strip	@1200°C		@1030°C		+ 600°C, 1hr
.9 -60m Ti;	5x5x.35"	20min	45-65%	30min	To 0.030"	1100°C, 4hr
.1 6-4	@ 12.5 tsi;	@1025°C	Reduction	@1065°C	No porosity	
	73% dense	77% dense				
.9 -60m Ti;	Direct to	15min	To 0.002"	30min	To 0.001"	850°C, 30min.
.1 6-4	0.011" strip	@1000°C		@ 1010°C		
		85% dense				
.9 -60m Ti;	2" dia. X 4"	15min	Heated 600°C			1200°C 1hr
.1 -200m 6-4	isopress @	@ 1065°C	Argon;			
	25tsi		Extruded 4:1			
.9 -60m Ti;	5x5x1"	30min	1" sq. x 5" bar	30min	2 bars cold	1200°C 15min
.1 -200m 6-4	12 tsi	@ 1030°C	cold forged to	@ 1000°C	rolled & 2	
	73% dense		.6"sq x 10"		@600°C to	
			@ 20 to 60tsi		0.3" dia rods	
700 00 000	Discotto	4.5	100% dense	1 5		400000 45
.730 -60+200	Direct to	15min	Cold rolled on	15min	Cold rolled on	1300°C 15min
Ti; -20+325 m	0.027" strip	@ 1300°C Ar;	2-high mill to	@ 650°C	4-high to	Beta
.13V, .11Cr, .03Al		induction 89% dense	0.020"		0.010"	
	Direct to		Cold rolled to	15min	Cold rolled to	450°C 1hr
282pts Ti - 60m:	0.008-0.010"	15min @1200°C He	0.005-0.007"	@ 1200°C He		400-0 111
6pts -60m Cr;	strip	90% dense	100% dense		0.001	
6pts-100m Fe	Sulp	30 /0 UE113E				
6pts-100mMo						

Table 2. Summary of Ti Alloy Pressing Procedures from duPont Patents.

Note: 6-4 is 60%AI, 40%V master alloy powder

This work reportedly produced product of comparable microstructure and properties to conventionally processed alloys, other than the high chloride content. Use of the elemental or master alloy blends to produce completely homogenized alloy was established.

5.3 Solid Freeform Fabrication

The subject of solid freeform fabrication has received great attention, with application to a wide variety of materials, and with many processes. A few of the activities applying these techniques to titanium are as follows:

- Electron Beam Melting: An electron beam, controlled by a CAD file, scans the surface of a powder bed, fusing the material only in the area of the desired part. Layers of powder are sequentially spread and fused as above to create a 3D structure, as shown in Figure 24.^{59, 60}
- A similar process, but with the use of a laser as the heat source has been used successfully by Trumpf to produce complex shapes such as that shown in Figure

25.⁶¹ Figure 26 shows the principle of an AeroMet Laser Additive Manufacturing unit.

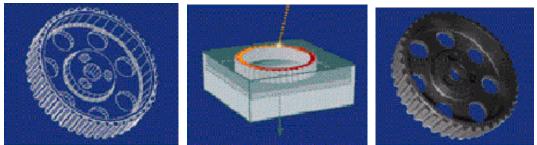


Fig. 24 STL File, E Beam Process and Finished SFF Part 56

Fig. 25 Complex Ti-6-4 Parts by Trumpf Laser Melting Technology ⁶¹

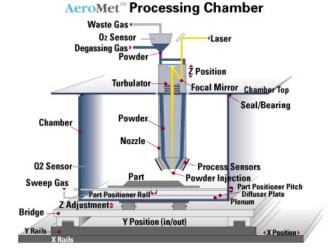


Fig. 26 AeroMet Laser Additive Manufacturing Using Powder ⁶²

- Laser Precision Metal Deposition uses flat wire fed into a melt pool formed using a laser as shown in Figure 27.^{63, 64} This process is used to build up portions of a structure on a substrate in order to avoid extensive machining away of unwanted material. The process is entering production in aerospace manufacturing.
- The Plasma Transferred Arc (PTA) process is being developed and demonstrated for production of titanium components by MER Corp.⁶⁵. The process is shown schematically in Figure 28, along with a titanium deposit. Plasma transferred arc was selected as a heat source for expected advantages in deposit purity, capital and operating cost, and build rate. Tensile properties in PTA deposits comparable to cast, wrought and laser deposited Ti-6AI-4V alloy have been demonstrated. Ti has been deposited on steel directly and with Ta, Nb, V or Ni intermediate layers. Ti-6AI-4V-WC cermet has also been deposited on Ti-6AI-4V to provide wear resistant surfaces on Ti alloy structures. Near net shape preforms have been used to produce a variety of components.

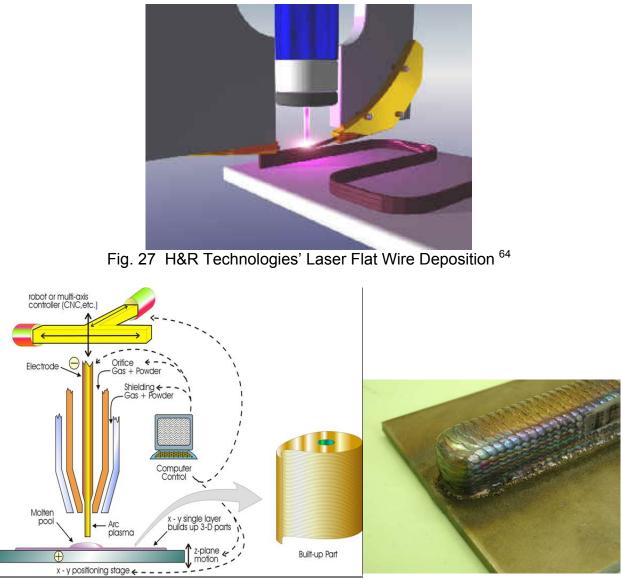


Fig. 28 Schematic of MER Corp. Plasma Transferred Arc SFF Fabrication Process and Deposited Ti-6AI-4V Alloy Preform.⁶⁵

5.4 Applications

A list of new applications for titanium would be lengthy enough to deserve a dedicated study. No attempt has been made at such a comprehensive list, other than for heavy duty vehicles¹. However, a few technology and applications papers from the Ti-2003 Conference are of interest to ground vehicles.

- γ-TiAl turbocharger rotor has been used in the 1999 Mitsubishi Lancer Evolution VI, RS version used in racing applications. ^{66, 67}
- Laser deposition is also being used to fabricate performs for titanium forgings.⁶⁸

- A pilot plant has been commissioned for production of γ-TiAl engine valves. The process uses cold wall crucible induction melting and centrifugal casting with 50 valves / mold. Molds use Nb inserts. The system has capacity for 600,000 parts / year using one operator. Over 200 casting trials have been performed on 10 different valve types for 5 automotive companies. Engine testing is planned. ^{69, 70}
- TiAl turbocharger rotors, using Howmet XD45, are being considered for mass production Daimler-Chrysler autos beginning in '05/'06, providing development and cost efforts are successful.⁷¹

6.0 References

- 1. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy-Duty Vehicles, EHKTechnologies, Oak Ridge National Laboratories Report ORNL/Sub/4000013062/1, July 2002. http://www.ornl.gov/~webworks/cppr/y2002/rpt/114484.pdf
- Plotted from data in: P.C.Turner and J.S.Hansen, "An Assessment of Existing Titanium Technologies," Albany Research Center, Department of Energy, July 28, 1999
- 3. W. J. Kroll, "Method for the Manufacturing of Titanium and Alloys Thereof", US Patent 2,205,854; June 25, 1940
- 4. W. J. Kroll, Trans. Electrochem. Soc. V112. p.35 47, 1940
- 5. www.toho-titanium.co.jp
- 6. www.sumitomocorp.co.jp
- 7. Titanium: Past, Present, and Future (1983); National Academy of Sciences, p. 65; available on-line at books.nap.edu/books/POD140/html/66.html (If not granted access, access through Google search: titanium sponge)
- 8. E.Crist, K.Yu, J.Bennett, F.Welter, B.Martin, S.Luckowski, "Manufacturing of PAM-Only Processed Titanium Alloys", 10th World Conference on Titanium, Hamburg, Germany, July 14, 2003
- 9. A www.antares.com.ua
- 10. H. Scholz, M. Blum, U. Biebricher, "An Advanced ESR Process for the Manufacturing of Ti Slabs," 10th World Conference on Titanium, Hamburg, Germany, July 15, 2003
- 11.www.ald-ag.de
- 12. G. Z. Chen, D. J. Fray, T. W. Farthing, "Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride," Nature, <u>407</u>, 361-364 (Sept.) 2000
- 13. www.bushveldalloys.co.uk
- 14. The Role of Titanium in the Automobile: Understanding the Economic Implications of Two Emerging Technologies; Camanoe Assoc., Cambridge, MA; For Northwest Alliance for Transportation Technologies; June 2001.
- 15. Constructed by EHKTechnologies from observation of the ITP process
- 16. US Patents: 4,338,177; 4,342,637; 4,409,083; 4,670,110
- 17. J. C. Withers, R. O. Loutfy, "A New Novel Electrolytic Process to Produce Titanium," The 19th Annual Titanium Conference of the International Titanium Association, Monterey, October 13-15, 2003
- K. Lau, D. Hildenbrand, E. Thiers, G. Krishnan, E. Alvarez, D. Shockey, L. Dubois, A. Sanjurjo, "Direct Production of Titanium and Titanium Alloys," The 19th Annual Conference of the International Titanium Association, Monterey, October 13-15, 2003
- 19. Private Communication, BHPBilliton
- 20. Private Communication, Idaho Titanium Technologies
- 21. M. V. Ginatta & G. Orsello, Plant for the Electrolytic Production of Reactive Metals in Molten Salt Baths, US Patent 4,670,121; June 2, 1987
- 22. M. V. Ginatta, G. Orsello, R. Berruti, Method and Cell for the Electrolytic Production of a Polyvalent Metal, US Patent 5,015,342; May 14, 1991

- 23. E. DiMaria, "RMI Gets License to Make New Type of Titanium," Metalworking News, Feb. 1, 1988
- 24. M. V. Ginatta, "Process for the Electrolytic Production of Metals", US Patent 6,074,545; June 13, 2000
- 25. M. V. Ginatta, "Economics of Production of Primary Titanium by Electrolytic Winning," EPD Congress 2001, TMS, p.13-41
- 26. M. V. Ginatta, "Titanium Electrowinning," Presented at Ti-2003, July 15, 2003, Hamburg, Germany
- 27. Private Communication, M. V. Ginatta
- 28.K.Ono and R.O.Suzuki, "A New Concept for Producing Ti Sponge: Calciothermic Reduction," Journal of Metals, Feb. 2002, p.59-61
- 29. R. O. Suzuki, "Thermo-Electro-Chemical Reduction of TiO₂ in the Molten CaCl₂," Presented at Ti-2003, Hamburg, July 15, 2003.
- 30. R. O. Suzuki & S. Inoue, "Calciothermic Reduction of Titanium Oxide in Molten CaCl₂," Met. & Mat'ls. Trans. B, v.34B, No. 3, p277-285, June 2003.
- 31. R. O. Suzuki, K. Teranuma and K. Ono, "Calciothermic Reduction of Titanium Oxide and in-situ Electrolysis in Molten CaCl2," ibid, p.287-295
- 32. R.O.Suzuki, K.Ono, "OS Process Thermochemical Approach to Reduce Titanium Oxide in the Molten CaCl2," in TMS Yazawa International Symposium, Metallurgical and Materials Processing: Principles and Technologies, VoIIII: Aqueous and Electrochemical Processing; Ed. By F. Kongoli, K. Itagaki, C Yamauchi and H. Y. Sohn, 2003, P187-199
- 33. Private Communication, Millennium Chemical
- 34. R. Ottensmeyer, P. J. Plath, "A New Process for Production of Titanium," 10th World Conference on Titanium, Hamburg, Germany, July 14, 2003
- 35. Private Communication, CSIR
- 36. F. Cardarelli, A Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State, WO 03/046258 A2, June 5, 2003
- 37. T. Abiko, I. Park, T. H. Okabe, "Reduction of Titanium Oxide in Molten Salt Medium," 10th World Conference on Titanium, Hamburg, Germany, July 15, 2003
- 38. T. H. Okabe, T. Oda, Y. Mitsuda, "Titanium Powder Production by Preform Reduction Process," 10th World Conference on Titanium, Hamburg, Germany, July 15, 2003
- 39. Private Communication, Vartech, Inc.
- 40. Q. Duan, Y. Wu, L. Zhou, "New Production Technique for Low-Cost Titanium Powder," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
 41. US Patent 6.231.636
- 42. Proceedings of the 10th World Conference on Titanium, Ti-2003 Science and Technology, Ed. G. Luetjering, Wiley, 3527-30306-5, December, 2003.
- 43. Titanium and Titanium Alloys: Fundamentals and Applications. Ed. C. Leyens, M. Peters, Wiley, 3527-30534-3, 2003.
- 44. Titan und Titanlegierungen. Ed. M. Peters, C. Leyens, Wiley, 3527-30539-4, 2002
- 45. Titanium, G. Lütjering, J. C. Williams, Springer, 3-540-42990-5, 2003
- 46.I.C. Wallis, A. Wisbey, J. W. Brooks, "Comparison of Ingot and Powder Metallurgy Production Routes on the Statistical Variability of the High Strength Ti-10-2-3

Titanium Alloy," 10th World Conference on Titanium, Hamburg, Germany, July 16, 2003

- 47. T. Saito, "New Titanium Products via Powder Metallurgy Process," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 48.www.tytlabs.co.jp/office/elibrary/lib_e01/d11_gummetal.pdf
- 49. N. Matsukura, T. Yashiki, Y. Miyamoto, Y. Yamamoto, "Heat Resistant Titanium Alloy for Mufflers, Ti-1.5%AI," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 50. Y. Kosaka, J. C. Fanning, S. P. Fox, "Development of Low Cost High Strength Alpha/Beta Alloy with Superior Machinability," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 51. F. H. Froes, V. S. Moxson, C. F. Yolton, V. A. Duz, "Titanium Powder Metallurgy in Aerospace and Automotive Components," Special Interest Program, MPIF, Las Vegas, June 2003.
- 52. Private Communication, Advanced Forming Technology
- 53. US Patent 2,984,560; May 16, 1961; "Production of High-Purity, Ductile Titanium Powder", H. Dombrowski; Assigned to du Pont Company.
- 54. US Patent 3,072,347; Jan. 8, 1963; "Metal Processing", H. Dombrowski; Assigned to du Pont Company.
- 55. US Patent 3,084,042; April 2, 1963; "Metal Production", W. Wartel, R. Wasilewski, W. Pollock; Assigned to du Pont Company
- 56. US Patent 3,478,136; Nov. 11, 1969; "Process for Roll-Compacting of Metal Powder with Flange Lubrication", K. Buchovecky, Assigned to Alcoa; W. Patton, Assigned to du Pont Company.
- 57. US Patent 3,530,210; Sept. 22, 1970; "Metal Powder Rolling Process", W. Patton, Assigned to du Pont Company.
- 58. Titanium: Past, Present, and Future (1983); National Academy of Sciences; Appendix K, P. 207; www.nap.edu/openbook/POD140/html/37.html
- 59. Courtesy Arcam AB ; www.arcam.com
- 60. W. Meiners, C. Over, K. Wissenbach, J. Hutfless, M. Lendemann, "Direct Manufacturing of Titanium Parts with Unique Properties," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 61. Courtesy Trumpf Group; www.Trumpf.com
- 62.www.aerometcorp.com
- 63. R. R. Boyer, J. D. Cotton, D. J. Chellman, "Titanium for Airframe Applications: Present Status and Future Trends," 10th World Conference on Titanium, Hamburg, Germany, July 15, 2003
- 64. WWW.hrtechnologies.com
- 65. J. C. Withers, R. Storm, M. Samandi, R. Loutfy, E. Whitney, "The Development of Plasma Transferred Arc Solid Free Form Fabrication as a Cost Effective Production Methodology for Titanium Components," The 19th Annual Titanium Conference of the International Titanium Association, Monterey, October 13-15, 2003
- 66. H. Clemens, R. Gerling, F. Appel, A. Bartels, H. Kestler, V. Güther, H. Baur, "Technology, Properties and Applications of Engineering Titanium Aluminide Alloys," 10th World Conference on Titanium, Hamburg, Germany, July 15, 2003
- 67. www.lancer-evolution.net/evo vi engine.htm

- 68. D. Furrer, R. Boyer, K. Spitzer, "Laser Deposited Titanium for Forging Preforms," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 69. M. Blum, H. Franz, G. Jarczyk, P. Seserko, H. J. Laudenberg, K. Segtrop, P. Busse, "Mass Production of Gamma TiAl-Automobile Valves on Prototype Scale," 10th World Conference on Titanium, Hamburg, Germany, July 17, 2003
- 70. M. Blum, H. G. Fellmann, H. Franz, G. Jarczyk, T. Ruppel, K. Segtrop, H.-J. Laudenberg: Commissioning of a prototype plant for the economical mass production of TiAl-valves. Structural Intermetallics 2001, ed. by K. J. Hemker, Warrendale : TMS, 2002, p. 131-135.\
- 71. H. Baur, D. B. Wortberg, "Titanium Aluminides for Automotive Applications," 10th World Conference on Titanium, Hamburg, Germany, July 18, 2003

7.0 Acknowledgements

EHKTechnologies would like to thank all those who sponsored and participated in this project. The sponsorship of Dr. Sid Diamond of the US Department of Energy and Dr. D. Ray Johnson of Oak Ridge National Laboratory, who provided funding under ORNL Subcontract 4000023694, is greatly appreciated. Without the invaluable information, opinions and guidance of the following companies and organizations, this study and report would not have been possible:

AeroMet Corp. ALD Vacuum Technologies Antares Arcam AB **BHP** Billiton **Boeing Company** British Titanium, plc Camanoe Associates CSIR, S. Africa Dynamet Technology, Inc. Galt Alloys Ginatta Torino Titanio s.r.l. GKSS HR Technologies Idaho Research Foundation Idaho Titanium Technologies International Titanium Powder Kyoto University MER Corp. **Millenium Chemical**

MIR-Chem Northwest Institute for Non-Ferrous Metals Precision Castparts Corp. QinetiQ Ltd. Quebec Iron and Titanium RMI Titanium SRI International Sumitomo Corp. Titanium Metals Corp. Toho Titanium Corp. Toyota **Trumpf Group** University of Idaho University of Tokyo US Department of Energy Albany Research Center Oak Ridge National Laboratory Pacific Northwest National Laboratory Vartech, Inc.

For clarification or discussion, please contact:

Dr. Edwin H. Kraft EHKTechnologies 10917 SE Burlington Dr. Vancouver, WA 98664 Phone: 360-896-0031 Fax: 360-896-0032 Email: ekraft@ehktechnologies.com

8.0 Distribution

Company	Names	Address	Phone	Email
ADMA International, Inc.	Vladimir S. Moxson	8189 Boyle Parkway Twinsburg, OH 44087	330-425-1230	
Advanced Forming Technology	Laxmappa Hosamani	7040 Weld County Road 20 Longmont, CO 80504	303-833-6113	laxmappah@pcc-aft.com
Advanced Vehicle Systems, Inc.	Rick Hitchcock	7801 Lee Highway Chattanooga, TN 37421	423-821-3146	rhitchcock@bellsouth.net
AeroMet Corporation	Frank Arcella	7623 Anagram Drive Eden Prairie, Minnesota 55344	952-974-1802	Frank.Arcella@Aerometcorp.com
AK Steel Corporation	Beth Knueppel	705 Curtis Street - Door #225 Middletown, OH 45043	513-727-5838	beth.knueppel@aksteel.com
Akzo Nobel	Kenneth Dahlqvist	Eka Chemicals AB SE-445 80 BOHUS Sweden	46-31-58-7000	Kenneth.dahlqvist@permascand.se
Albany Research Center	Paul C. Turner Stephen J. Gerdemann Alan D. Hartman	1450 Queen Ave., SW Albany, OR 97321	541-967-5863 541-967-5964 541-967-5862	turner@alrc.doe.gov gerdemann@alrc.doe.gov Hartman@alrc.doe.gov
Alcoa, Inc.	Russell Long Todd Summe David R. Williams	100 Technical Drive - Bldg D Alcoa Center, PA 15069	724-337-5420 724-337-5464 724-337-2861	Russell.long@alcoa.com Todd.summe@alcoa.com David.r.Williams@alcoa.com
Allvac	Dick Kennedy	P.O. Box 5030 2020 Ashcroft Ave. Monroe, NC 28110	704-289-4511	Dick.kennedy@allvac.com
Aluminum Association	Richard L. Klimisch	One Towne Square Suite 230 Southfield, MI 48076	248-784-3005	rklimisc@aluminum.org
Aluminum Association	Mike Skillingberg	00 19th Street, NW Suite 300 Washington, D.C. 20006	202-862-5121	mhskilli@aluminum.org
Aluminum Consultants Group, Inc.	Warren Hunt	4530 William Penn Highway, #3900 Murrysville, PA 15668-2002	724-733-1823	
Allvac	Brian Drummond	2020 Ashcraft Ave. P. O. Box 5030 Monroe, NC 28111-5030	704-289-4511	Brian.drummond@allvac.com
American Iron and Steel Inst.	Ron Krupitzer	2000 Town Center, Ste. 320 Southfield, MI 48075-1123	248-351-4777	
American Metal Market	Frank Haflich	PO Box 641325 Los Angeles, CA 90064	310-914-4030	thaflich@amm.com

American Plastics Council	Bruce T. Cundiff	1800 Crooks Road, Suite A Troy, MI 48084	248-244-8920	bcundiff@ameriplas.org
American Trucking Association	Victor Suski	2200 Mill Rd Alexandria, VA 22314	703-838-1846	vsuski@trucking.org
Ames Laboratory	Iver Anderson	126 Metals Dev Ames, ID 50011-3020	515-294-4446	andersoni@ameslab.gov
Ametek, Inc.	Jack Easley Clive Scorey	21 Toelles Rd. P. O. Box 5807 Wallingford, CT 06492-7607	203-949-8810 203-949-8828	Jack.easley@ametek.com Clive.scorey@ametek.com
Antares Group Incorporated	Michael D. Laughlin Peter McCallum	4351 Garden City Drive Suite 301 Landover, MD 20785	301-731-1900 301-731-1900	mlaughlin@antaresgroupinc.com pmccallum@antaresgroupinc.com
Argonne National Laboratory	William A. Ellingson J. G. Sun Jules Routbort Linda Gaines George Fenske	9700 South Cass Ave., ET/212 Argonne, IL 60439-4838	630-252-5068 630-252-5065 630-252-4919 630-252-5190	ellingson@anl.gov sun@anl.gov routbort@anl.gov lgaines@anl.gov gfenske@anl.gov
Auto/Steel Partnership	Theodore Diewald	2000 Town Center - Suite 320 Southfield, MI 48075-1123	248-945-4776	tdiewald@a-sp.org
Autokinetics	Bruce Emmons	1711 West Hamlin Road Rochester Hills, MI 48309-3368	248-852-4450	jbemmons@autokinetics.com
ArvinMeritor, Inc.	Sam Ciray Cynthia Gosselin	Columbus Technical Center Materials Technology Lab, Bldg.1, 950 W, 450 S Columbus, IN 47201	812-341-2355 812-341-2340	sam.ciray@arvinmeritor.com cynthia.gosselin@arvinmeritor.com
AT&T Government Solutions	John D. Carlyle	5383 Hollister Ave., Suite 200 Santa Barbara, CA 93111	805-879-4303	carlyle@att.com
AVISMA	Vladislav Tetyukhin	Berezniki, Perm Region Zagorodnaya st., 1 618421, Russia		
Battelle	Jim Patton	505 King Ave Columbus, OH 43201	614-424-3792	
BHP Billiton	Robert Watts Megan Clark DAC Williams Simon Ellwood Darryl Ward	GPO Box 86A Melbourne VIC 3001 Australia	61 3 9609 4263 61 3 9609 3441 61 3 9609 3269 61 3 9609 2303	Robert.o.watts@bhpbilliton.comMegan.clark@bhpbilliton.comCory.dac.williams@bhpbilliton.comSimon.j.ellwood@bhpbilliton.comDarryl.JS.Ward@bhpbilliton.com

BHP Billiton	Andrew Shook	PO Box 188	61 2 4979 2550	Andrew.a.shook@bhpbilliton.com
	Peter Mayfield	Wallsend NSW 2287 Australia	61 2 4979 2500	Peter.l.mayfield@bhpbilliton.com
BIZTEK Consulting, Inc.	Raymond Fessler	820 Roslyn Place	847-733-7410	BIZTEKrrf@aol.com
		Evanston, IL 60201-1724		
Boeing Company	James D. Cotton	P. O. Box 3707 MC 4E-03	206-655-7027	James.d.cotton@boeing.com
		Seattle, WA 98124-2207		
Boeing Company	Ricky L. Martin	Metallic Processes Development	314-233-0258	ricky.l.martin@boeing.com
	Kevin Slattery	Boeing - Phantom Works	314-232-6538	kevin.t.slattery@boeing.com
		P.O. Box 516		
		mailcode S245-1003		
		St. Louis, MO 63166-0516		
BorgWarner Turbo Systems	Robert Liebold	PO Box 15075	828-684-4002	rlebold@turbos.bwauto.com
		Asheville, NC 28813		
Boston University	Prof. Uday Pal	Manufacturing Engineering	617-353-7708	<u>upal@bu.edu</u>
		15 St. Mary's St.		
		Boston, MA 02215		
British Titanium, plc	James Hamilton	37 Mossop St.	44 20 7589 8535	jah@britishtitanium.co.uk
		London SW3 2NB, England		
Camanoe Assoc.	Joel Clark	Kendall Square	617-243-6885	jpclark@mit.edu
	Randy Kirchain	P.O. Box 425242	617-253-4258	
		Cambridge, MA 02142		
Caterpillar, Inc.	Mark J. Andrews	Technical Center –E/854	309-578-2953	Andrews_Mark_J@CAT.com
	Lou Balmer-Millar	PO Box 1875	309-578-4468	balmer-miller_lou@cat.com
	Brad Beardsley	Peoria, Il 61656-1875	309-578-2953	Beardsley M Brad@cat.com
	Greg Tomlins		309-578-2958	Tomlins_Gregory_W@cat.com
	Bill Lane		309-578-8643	Bill.lane@cat.com
	Karen Huber		309-578-8106	Huber Karen j@cat.com
	Tom Vachon		309-578-2853	Vachon_j_tom@cat.com
	Jesus Chapa-Cabrera		309-578-8347	Chapa-Cabrera_Jesus_G@cat.com
2	Philip McCluskey		309-578-2953	McCluskey Philip H@cat.com
Coastcast	Hans Beuhler	3025 E. Victoria St.	210 (20 0505	
	Greg Gregory	Rancho Dominguez, CA 90221	310-638-0595	Greg.gregory@coastcast.com
	Larry Craigie	655 N. Fort Myer Drive	(703) 525 0659	lcraigie@cfa-hq.org
Composites Fabricators Assoc.		Suite 510		
<u> </u>		Arlington, VA 22209	410 577 0640	
Concurrent Technologies	Ed Fasiska	425 Sixth Avenue	412-577-2642	fasiskae@ctc.com
Corporation		Regional Enterprise Tower, 28th Floor		
		Pittsburgh, PA 15219		

Consultant	Ron Bradley	4 Teal Wood Court Hilton Head Island, SC 29926	843-682-4166	ronjo2001hhi@earthlink.net
Consultant	Frank Ferfecki	192 East Lincoln Street Birmingham, MI 48009 (Hm)	(248) 645-0020	frank.ferfecki@owenscorning.com
Consultant	George Mayer	1613 NW 191 st Street Shoreline, WA 98177	206-616-2832	gmayer@u.washington.edu
Consultant	William T. Messick	14 Long Point Ct. Ocean Pine, MD 21811	410-208-4776	William.t.messick@mchsi.com
Consultant	Maxine Savitz	10350 Wilshire Blvd., Apt. 604 Los Angeles, CA 90024	310-271-0874	MaxineSavitz@aol.com
Consultant	Stan R. Seagle	60 Heron Circle Cortland, OH 44410	330-637-3089	SSeagle@hotmail.com
Consultant	Michael Wheeler	136 Bagot Street Kingston, Ontario K7L 3E5, Canada	613-549-0266	mike.wheeler2@sympatico.ca
CSIR	David van Vuuren	CSIR Pretoria Meiring Naude Rd., PO Box 395 Pretoria 0001 South Africa	27 12 841 2375	DvVuuren@csir.co.za
CSIRO	Dr. Richard Hannink Dr. Raj Rajakumar	CSIRO Minerals P O Box 312, Clayton South, Vic 3169, Australia	61 3 9545 8625	Richard.Hannink@csiro.au Raj.Rajakumar@csiro.au
Cummins Inc.	Randy Stafford Tom Yonushonis Martin Myers	Technical Center MC 50183 1900 McKinley Ave. Columbus, IN 47201	812-377-4701 812-377-3279 812-377-7078	randy.j.stafford@cummins.com thomas.m.yonushonis@cummins.com
Cymat Corp.	Richard Rusiniak	1245 Aerowood Drive Mississauga, Ontario L4W IB9, Canada	905-602-1100 Ext. 10	rusiniak@cymat.com
DaimlerChrysler Corporation	Mary Neaton Subi Dinda	800 Chrysler Drive Auburn Hills, MI 48326-2757	248-576-6680	Man14@daimlerchrysler.com
DaimlerChrysler Corporation	Thomas E. Turner	7463 Orene St. Shelby Twp., MI 48317	586-997-0132	tet4@dcx.com
DANA Corporation	Hong Lin Fred Mahler	8000 Yankee Road Ottawa Lake, MI 49267	419-535-4377 419-535-4332	hong.lin@dana.com
Delphi Automotive Systems	Jay Batten David Witucki Ashok Shah Bradley Sizelove	3900 E. Holland Road APC #1 Saginaw, MI 48601-9494	(989) 757-3895 (989) 757-4984 (989) 757-4988 989-757-3848	jay.batten@delphiauto.com david.witucki@delphiauto.com ashok.shah@delphiauto.com Bradley.sizelove@delphiauto.com

Delphi Research Labs	Michael Wyzgoski	51786 Shelby Parkway Shelby Township, MI 48315	586-323-6655	michael.g.wyzgoski@delphiauto.com
Detroit Diesel Corp.	Yury Kalish Craig Savignon	Detroit Diesel Corp. 13400 Outer Drive, West Detroit, MI 48239-4001	313-592-7455 313-592-7825	
Donaldson Company, Inc. (Ail Filtration and Exhaust Systems)	Julian Imes Ted Angelo	Exhaust Div.; MS 208 POBox 1299 Minneapolis, MN 55440-1299	952-887-3730 952-887-3832	imes@mail.donaldson.com tangelo@mail.donaldson.com
Dynamet Incorporated	Alan Rossin Cliff Bugle	195 Museum Rd Washington, PA 15301	724-228-1000 724-229-4293	arossin@cartech.com
Dynamet Technology, Inc.	Stanley Abkowitz	Eight A Street Burlington, MA 01803	781-272-5967	sabkowitz@dynamettechnology.com
Eaton Corp.	Jose Masello	Engine Air Management Operations 19218 B Drive South Marshall, MI, 49068-8600	616-781-0346	josemasello@eaton.com
Ecoplexus Inc.	Allan D. Murray	400 Manitou Lane Lake Orion, MI 48362	248- 814-8072	admurray@sbcglobal.net
Edison Welding Institute	Kevin Ely	1250 Arthur E. Adams Drive Columbus, OH 43221-3585	614-688-5093	kevin_ely@ewi.org
EHKTechnologies	Edwin H. Kraft	10917 SE Burlington Drive Vancouver, WA 98664-5383	360-896-0031	ekraft@ehktechnologies.com
Fedex Ground	Bob Flesher	P.O. Box 108 Pittsburg, PA 15230	412-262-6773	bob.flesher@fedex.com
Fleetguard, Inc.	Ken Kicinski	Nelson Division PO Box 428 Stoughton, WI 53589	608-873-4245	
Flex-N-Gate Corp.	Ming Tang	1306 E. University Ave. Urbana, IL 61802	217-278-2323	mtang@flex-n-gate.com
Ford Motor Company	Andy Sherman Bob Natkin	Ford Scientific Research Lab Mail Drop 3135 2101 Village Road Dearborn, MI 48124	313-594-6897 313-322-1725	asherma1@ford.com rnatkin@ford.com
Ford Motor Company	Paul Geck	Beech Daly Technical Center 2001 Beech Daly Road Dearborn Hts, MI 48125	313-323-0014	pgeck@ford.com

Freightliner LLC	Joseph S. Richie	4747 N. Channel Ave.	503-745-5931	JoeRichie@Freightliner.com
2	Darcy Shull	PO Box 3849	503-745-8322	DarcyShull@Freightliner.com
	Dan Fuchs	Portland, OR 97208-3849	503-745-6925	DanFuchs@Freightliner.com
	Tony Petree		503-745-8687	TonyPetree@Freightliner.com
	Luis Novoa		503-745-8127	novoala@attbi.com
GE Aircraft Engines	Andy Woodfield	Mail Drop: M-89	513-243-7915	Andy.woodfield@ae.ge.com
		1 Neumann Way		
		Cincinnati, OH 45215		
General Dynamics Land Systems	Glenn M. Campbell	MZ: 436-30-44	(586) 825-7712	campbegm@gdls.com
	-	38500 Mound Rd.		
		Sterling Heights, MI 48310		
General Motors Corp.	William M. Hartman	Advanced Purchasing	586-492-7864	William.M.Hartman@GM.com
		MC480205201		
		30007 Van Dyke		
		Warren, MI 48090		
Gfe Metalle und Materialien	Volker Guther	Hoefener Strasse 45	49 911-93 15-446	vg@gfe-online.de
		D-90431 Nuremberg		
		Germany		
Gibson Tube	Joseph H. Zielinskie	100 Aspen Hill Rd.	908-218-1400	joez@gibsontube.com
		PO Box 5399		
		North Branch, NJ08876		
Ginatta Torino Titanio s.r.l.	Marco V. Ginatta	Via Bologna 220	39-011-240-7337	<u>ginatta.titanio@tin.it</u>
		10154, Torino, Italy		
Great Dane Trailers	Dan McCormack	P.O. Box 67	912-644-2414	djmccormack@greatdanetrailers.com
	Charlie Fetz	Savannah, GA 31402	912-644-2413	
Heil Trailer International	Travis McCloud	PO Box 160	423-745-5830x218	tmccloud@heiltrailer.com
	Brian Yielding	1125 Congress Parkway	423-745-5830x235	byielding@heiltrailer.com
		Athens, TN 37303		
Hendrickson International	Bill Wilson	800 S. Frontage Rd.	630-910-2840	bwilson@hendrickson-intl.com
	Jeff Zawacki	Woodridge, IL 60517-4904	630-910-2124	jzawacki@henderickson-intl.com
Hexel Carbon Fibers	Mohamed Abdallah	P.O. Box 18748	801-508-8083	mohamed.abdallah@hexcel.com
		Salt Lake City, UT 84118-0748		
Hitchiner Manufacturing, Inc.	Paul McQuay	Ferrous Div.	603-673-1100 x1549	Paul_McQuay@Hitchiner.com
		1 Scarborough Rd.		
		Milford, NH 03055		
Honeywell Electronic Materials	Yun Xu	The Alta Group	724-452-1658	Yun.xu@honeywell.com
Liene j went Electronice Muterials		195 Hartzell School Rd.	121 102 1000	
		Fombell, PA 16123		
		10110011, 171 10125		

Howmet Research Corp.	Richard A. Thompson	1500 S. Warner St.	231-894-7087	rthompson@howmet.com
	Robert B. Funnell	Whitehall, MI 49461	231-894-7528	rfunnell@howmet.com
	Tom Wright		231-894-7519	
Howmet Corporation	Dan Buwalda	Titanium Ingot Operation	231-894-7415	dbuwalda@howmet.com
		555 Benston Road		
		Whitehall, Mi 49461		
Hydro Magnesium Marketing	Darryl Albright	21644 Melrose Avenue	313-353-2629	darryl.albright@hydro.com
		Southfield, MI 48075-7905		
ICRC	Tom Watson	1115 E. Whitcomb	248-823-4287	twatson@icrc-detroit.net
		Madison Heights, MI 48071		
Idaho National Engineering	Glenn Moore	Bechtel BWXT Idaho	208-526-9587	mga@inel.gov
Laboratory		P.O. Box 1625, MS-2210		
-		Idaho Falls, ID 83415		
Idaho Titanium Technologies	Ron Cordes	101 Technology Drive	208-522-9912	troutbeck@ida.net
		Idaho Falls, ID 83401		
Institute for Defense Analysis	Dr. Yevgeny Macheret	4850 Mark Center Dr.		
		Alexandria, VA 22311-1882		
International Titanium Assoc.		350 Interlocken Blvd.	303-404-2221	
		Suite 390		
		Broomfield, CO 80021-3485		
International Titanium Powder	Richard P. Anderson	20634 W. Gaskin Dr.	815-834-2112	richardanderson@itponline.com
	Grant Crowley	Lockport, IL 60441		Crowley@itponline.com
International Truck & Engine Corp.	Nirmal Tolani	Truck Development	260-461-1238	nirmal.tolani@nav-international.com
	V. K. Sharma	and Technology Center	260-461-1237	
		2911 Meyer Road		
		PO Box 1109		
		Ft. Wayne, IN 46803-1109		
International Truck & Engine Corp.	Heinz Wamser	10400 W. North Ave.	708-865-4017	heinz.wamser@nav-international.com
		Melrose Park, IL 60160		
JB Hunt	Henry Pianalto	705B N. Bloomington	479-659-8620	Henry pianalto@jbhunt.com
	-	PO Box 690		
		Lowell, AR 72745		
Kenworth	James Bechtold	PO Box 1000	425-828-5104	jim.bechtold@paccar.com
		Kirkland, WA 98083-1000		
Kindrick Trucking Company, Inc.	Gary Kindrick	Rt 8, Box 342	423-882-0457	gk@kindrickgroup.com
•		Harriman, TN 37748		

Kyoto University	Ryosuke O. Suzuki	Dept. of Energy Science and Technology Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan	81 75 753-5453	Suzuki@energy.kyoto-u.ac.jp
Los Alamos National Laboratory	Ricardo Schwarz, MSK765 Dave Dombrowski, MSG753 Sherri Bingert	Materials Science and Tech. Los Alamos, NM 87545	505-667-8454 505-664-0329	rxzs@lanl.gov ded@lanl.gov sherri@lanl.gov
Mack Trucks, Inc. (Engines)	John B. Bartel Guy Rini Chuck Salter	13302 Pennsylvania Ave. Hagerstown, MD 21742	301-790-5762 301-790-5832 301-790-5617	john.bartel@macktrucks.com guy.rini@macktrucks.com chuck.salter@volvo.com
Mack Trucks, Inc. (Trucks)	Steve Ginter Tom Davis Mark Kachmarsky	Advanced Engineering 2402 Lehigh Parkway South Allentown, Pa. 18103	610-709-3257 610-709-3655 610-351-8667	Mark_kachmarsky@macktrucks.com
Magnesium Corp. of America	Howard Kaplan	238 North 2200 West Salt Lake City, UT 84116	801-532-2043	hkaplan@magnesiumcorp.com
Massachusetts Institute of Technology	Prof. Donald R. Sadoway	Department of Materials Science and Engineering Room 8-109 77 Massachusetts Ave. Cambridge, MA 02139-4307	617-253-3487	<u>dsadoway@mit.edu</u>
Materials Solutions	Blain Chappell	826 Harold St. Moscow, ID 83843	801-918-7651	BlainMC@yahoo.com
Mayflower Vehicle Systems, Inc.	Robert Fairchild	37900 Interchange Drive Farmington Hills, MI 48335	248-473-7500x503	rob.fairchild@mvs-na.com
MER Corporation	James C. Withers Raouf Loutfy	7960 S. Kolb Rd. Tucson, AZ 85706	520-574-1980x113 520-574-1980x112	JCWithers@mercorp.com rloutfy@mercorp.com
Meridian Automotive Systems	Jeffrey Robbins	550 Town Center Suite 450 Dearborn, MI 48126	313-253-4036	jrobbins@meridianautosystems.com
Meridian Automotive Systems	Ken Schmell	6701 Statesville Blvd Salisbury, NC 28147	704-797-8744	kschmell@meridianautosystems.com
Millennium Chemicals	Pierre Jaquet Larry Duke Joseph Rowan	20 Wight Ave., Suite 100 Hunt Valley, MD 21030	410-229-4501 410-229-8071 410-229-5059	pjaquet@mic-usa.com larry.duke@millenniumchem.com jay.rowan@millenniumchem.com

Ministere De La Defense	Pierre-Francois Louvigne	Centre Technique D'Arcueil CTA – 16 bis Avenue Prieur de la Cote d'Or 94114 Arcueil cedex France	33 1 42 31 92 37	Pierre-Francois.Louvigne@etca.fr
MIR-Chem GmbH	Peter Jorg Plath	Mary-Astell-Str. 10 D-28359 Bremen Germany		plath@mir-chem.de
National Composite Center	Scott Reeve	2000 Composite Drive Kettering, OH 45420	937-297-9462	sreeve@compositecenter.org
National Institute of Standards and Technology	George Quinn, Stop 8521 Steve Hsu, Stop 8553	Gaithersburg, MD 20899	301-975-5765	geoq@nist.gov
Noranda Inc.	Mihriban Pekguleryuz	240 Hymus Boulevard Pointe-Claire Quebec, Canada H9R IG5	514-630-9339	
North Carolina A&T State University	Jagannathan Sankar	Dept. of Mechanical Engineering Greensboro, NC 27411	336/256-1151 x 2282	sankar@ncat.edu
University of Michigan	Albert J. Shih	University of Michigan Dept. of Mechanical Engineering 2350 Hayward Street Ann Arbor, MI 48109-9379		ajshih@eos.ncsu.edu
Oak Ridge National Laboratory	L. F. Allard, MS-6064 Pete Angelini, MS-6065 Tim Armstrong, MS-6084 P. F. Becher, MS-6068 P. J. Blau, MS-6063 D. A. Blom, MS-6064 Craig Blue M. K. Ferber, MS-6068 Ed Grostick, MS-6068 Ed Grostick, MS-6472 D. Ray Johnson, MS-6066 J. O. Kiggans, MS-6087 C. T. Liu, MS-6115 S. B. McSpadden, MS-6069 P. J. Maziasz, MS-6115 R. D. Ott, MS-6063 A. E. Pasto V. K. Sikka, MS-6083 P. S. Sklad, MS-6065 D. P. Stinton, MS-6065	P.O. Box 2008 Oak Ridge, TN 37831	865-574-4981 865-574-4565 865-574-7996 865-574-5157 865-574-5157 865-241-4065 865-576-0818 865-946-1203 865-576-6832 865-574-8863 865-574-8863 865-574-4459 865-574-5444 865-574-5082 865-574-5122 865-574-5123 865-574-5123 865-574-5123 865-574-5123	allardlfjr@ornl.gov angelinip@ornl.gov armstrongt@ornl.gov becherpf@ornl.gov blaupj@ornl.gov blomda@ornl.gov blueca@ornl.gov blueca@ornl.gov grosticket@ornl.gov ijohnsondr@ornl.gov kiggansjojr@ornl.gov liuct@ornl.gov mcspaddensb@ornl.gov maziaszpj@ornl.gov ottr@ornl.gov sikkavk@ornl.gov sikkavk@ornl.gov sikkavk@ornl.gov siintondp@ornl.gov

Summary of Emerging Low Cost Titanium Technologies For US Dept. of Energy / Oak Ridge National Laboratory

EHKTechnologies Page 48

Oak Ridge National Laboratory - Continued	T. N. Tiegs, MS-6087 C. D. Warren, MS-6065 R. E. Ziegler, MS-6472 Central Res. Lib., MS-6191		865-574-5173 865-574-9693 865-946-1204	tiegstn@ornl.gov warrencd@ornl.gov zieglerre@ornl.gov
Oak Ridge National Laboratory	Bill Knee	National Transportation Research Center 2360 Cherahala Blvd. Knoxville, TN 37932	864-946-1300	kneehe@ornl.gov
Oak Ridge National Laboratory	Rayond Boeman	2366 Eaton Gate Road Orion Township, MI 48360	865-576-0382 248-452-0336	boemanrg@ornl.gov
Ohio State University	Jim Williams	142 Hitchcock Hall 2070 Neil Ave. Columbus, OH 43210-1278	614-292-2836	Williams.1726@osu.edu
Old Dominion Freight Lines	Tom Newby	Maintenance Department 500 Old Dominion Way Thomasville, NC 27360	336-822-5572	Thomas.Newby@ODFL.com
Oshkosh Truck Corporation	Robert M. Hathaway	New Product Development Center 370 West Waukau Avenue Oshkosh, Wisconsin 54902	920-233-9347	bhathaway@oshtruck.com
PACCAR	Jim Reichman Richard Bergstrand	777 106 th Ave. Bellevue, WA 98004	425-468-7884	JReishman@paccar.com
PACCAR Technical Center	Bill Roberts Margaret Sullivan	12479 Farm to Market Rd Mount Vernon, WA 98273	360-757-5286 360-757-5222	broberts@paccar.com margaret.sullivan@paccar.com
Pacific Cast Technologies	Wade Stevens	150 Queen Ave., SW PO Box 908 Albany, OR 97321	541-926-7711	
Pacific Northwest National Laboratory	Russell H. Jones Moe Khaleel Mark T. Smith Darrell R. Herling Richard W. Davies Jud Virden Curt Lavender	902 Battelle Boulevard PO Box 999 Richland, WA 99352	509-376-4276 509-375-2438 509-376-2847 509-376-3892 509-372-6770	<u>rh.jones@pnl.gov</u> <u>moe.khaleel@pnl.gov</u> <u>mark.smith@pnl.gov</u> <u>darrell.herling@pnl.gov</u> <u>jud.virden@pnl.gov</u> <u>curt.lavender@pnl.gov</u>
PCC Structurals, Inc.	David Cribbs Lee Kissinger Brad Scott Jim Barrett	Small Structurals Business Op. 4600 SE Harney Dr. Portland, OR 97206-0898	503-652-4646 503-794-2026 503-777-3881 503-788-5419	dcribbs@pcc-structurals.com lkissinger@pcc-structurals.com jbarrett@pcc-structurals.com

PCC Structurals, Inc.	Dave Harmon	Suite 300	513-791-6228	d.e.harmon@att.net
		10979 Reed Harman Hwy.		
De chin er Aleminer		Cincinnati, OH 45242 PO Box 68 Century Road	304-273-6466	paul.kobe@pechiney.com
Pechiney Aluminum	Devil Kehe	Ravenswood, WV 26164	304-273-0400	paul.kobe@pecniney.com
Demonstra El como L (1	Paul Kobe Brian R. Carter	Adams House	0208-336-7737	1
Perryman Europe Ltd.	Brian R. Carter		0208-336-7737	bcarter@perrymanco.com
		New Malden		
		Surrey KT3 3SF		
D . 1 11		United Kingdom	0.40 544 7745	1 110
Peterbilt	Landon Sproull	3200 Airport Road	940-566-7765	lsproull@paccar.com
		Denton, TX 76207	715 0050	
	Roger Gehring	428 Technology Drive	715-235-9350	Roger.gehring@phillipsplastics.com
Phillips Metal Injection Molding		Menomonie, WI 54751		
Profile Composites	Geoffrey Wood	1416 Lands End Road	250-655-7142	gmwood@aol.com
		Sydney, BC V8L5K1		
Purdue University	David R. Johnson	School of Materials Engineering	765-494-7009	davidjoh@ecn.purdue.edu
		1289 MSEE Building		
		West Lafayette, IN 47907-1289		
QinetiQ Ltd.	Prof. Malcolm Ward-Close	Cody Technology Park	44 1252 392540	mwardclose@qinitiq.com
		Ively Road		
		Farnborough, Hampshire, UK		
R&L Carriers	Jerry Johns	PO Box 271	800-582-1485	
		Wilmington, OH 45177		
Reitnouer Inc.	Bud Reitnouer, President	4001 Reading Crest Ave.	610-929-4856	dormae@early.com
		Reading, PA 19605		
Renton Coil Spring	Charles Pepka	P. O. Box 880	425-255-1453	rcsspring@aol.com
		425 S. 7 th St.		
		Renton, WA 98057-0880		
Rio Tinto Iron & Titanium	Jean-Francois Turgeon	1625 route Marie-Victorin	450-746-3076	JeanFrancois.Turgeon@rtit.com
	Francois Cardarelli	Sorel-Tracy (Quebec)	450-780-4089	Francois.cardarelli@rtit.com
		J3R 1M6 Canada		
RMI Titanium Company	Ernie Crist	1000 Warren Avenue		ecrist@rmititanium.com
1 5	Steve Giangiordano	Niles, OH 44446		
	Marty Procko			
	William Pallante			
	Oscar Yu			
Roadway	Tom Parks	1077 Gorge Blvd	330-384-1717	
-		Akron, OH 44310		

Rome Metals, Inc.	William L. Ringle	499 Delaware Ave.	724-775-1664	bringle@rimemetals.com
		Rochester, PA 15074		
Sandia National Laboratories	J. Bruce Kelley	P.O. Box 5800; MS 0753	505-845-3384	jbkelle@sandia.gov
		Albuquerque, NM 87185-0753		
Sandia National Laboratories	Douglas Bammann	P.O. Box 5800; MS 9405	925-294-2585	bammann@sandia.gov
		Albuquerque, NM 87185-9405		
Santoku America, Inc.	Ranjan Ray	8220 W. Harrison St.	623-907-6122	rray@santoku.com
		Tolleson, AZ 85353		
Southeastern Freight Lines	Dave Foster	4025 Sunset Blvd.	803-794-0047	dfoster@sefl.com
		West Columbia, SC 29169		
Southern Illinois University	Dale Wittmer	Department of Mechanical Engr.	618-453-7006	wittmer@engr.siu.edu
		& Energy Processes		
		Carbondale, IL 62901		
Specialty Metals Co. SA	Sylvain Gehler	42 A Rue Tenbosch	32 2 645 76 11	Sylvain.gehler@specialtymetals.be
		1050 Brussels, Belgium		
SRI International	Eugene Thiers	333 Ravenswood Ave.	650-859-4238	Eugene.thiers@sri.com
	Angel Sanjurjo	Menlo Park, CA 94025-3493	650-859-5215	Angel.sanjurjo@sri.com
Sumitomo Titanium Corp.	Masaaki Tachibana	1 Higashihama-cho	6-6413-9911	
		Amagasaki		
		Hyogo 660-8533, Japan		
TMC/ATA	Robert Braswell	2200 Mill Road	703-838-1776	rbraswel@trucking.org
		Alexandria, VA 22314		
Taratec Corporation	Ed Ungar	1251 Dublin Road	614-291-2229	eungar@tarateccorp.com
		Columbus, OH 43215		
TechSpec, Inc.	Edward F. Sobota	P. O. Box 69	724-694-2716	www.tsititanium.com
		Y Street		
		Derry, PA 15627		
Titanium Engineers, Inc.	Mitchell Dziekonski	PO Box 1527	281-265-2910	tiengrsmitch@cs.com
		Stafford, TX 77497		
Titanium Fabrication Corp.	Dan Williams	110 Lehigh Drive	973-808-4963	dwilliams@tifab.com
		Fairfield, NJ 07004		
Titanium Industries	Tom Deming	181 E. Halsey Rd.	973-428-7675	tdeming@titanium.com
		Parsippany, NJ 07054		
Titanium Metals Corp.	Kurt Faller	900 Hemlock Rd.	610-286-1222	kurt.faller@timet.com
TiMet Automotive	Steven H. Reichman	Morgantown, PA 19543	610-286-1200	steven.reichman@timet.com
Titanium Metals Corp.	Steve Fox	Henderson Technical Laboratory	702-566-4403	Steve.fox@timet.com
		PO Box 2128		
		Henderson, NV 89009		

Titanium Products	Larry LaVoy	P.O. Box 2580 Waldport, OR 97394	541-867-3769	
Tokyo Stainless Grinding Co.	Motohiko Arakawa	590-5 Owada-Shinden Yachiyo-City, Chiba 276-0046 Japan	47-450-0132	m-arakawa@tskenma.com
Tokyo Titanium Co., Ltd.	Ryota Ozawa	2-3-10, Kokaba Iwatsuki City, Saitama Pref. Japan 339-0072	48-795-0473	Ryota.Ozawa@titanium-japan.com
Tower Automotive	Mohib Durrani Christopher Santucci	3533 North 27th Street Milwaukee, WI 53216	414-447-5833	durrani.mohib@towerautomotive.com
Tribo Materials Technology, LLC (TMT)	Yngve Naerheim	1577 Kirk Avenue Thousand Oaks, CA 91360	805-496-8371	ynaerheim@tmtlc.com
Truck Manufacturers Assoc	Bill Leasure	1225 New York Ave NW Washington, DC 20005	202-638-7825	tma_bill@ix.netcom.com
UES, Inc.	Tai-Il Mah	4401 Dayton-Xenia Rd. Dayton, OH 45432-1894	937-255-9829	Tail.mah@afrl.af.mil
Ulbrich Stainless Steels and Special Metals, Inc.	John J. Schmidt	57 Dodge Avenue North Haven, CT 06473	203-239-4481x166	Schmidt@ulbrich.com
United Defense	James Dorsch	1205 Coleman Ave. Santa Clara, CA 95050	408-289-3086	James.dorsch@udlp.com
Uniti Titanium	Carl R. Moulton Daniel T. Lacinski	Edgetowne Commons 1009 Beaver Grade Rd. Moon Township, PA 15108	412-424-0440	moulton@uniti-titanium.com lacinski@uniti-titanium.com
Universal Technical Resource Services, Inc.	Michael G. Lewis	210 Rabbit Drive Butte, MT 59701	406-494-0675	mlewis@utrsmail.com
University of Cambridge	Derek J. Fray	Dept. Mat. Sci. & Metallurgy Pembroke Street Cambridge CB2 3QZ United Kingdom	44 1223 334300	Djf25@cam.ac.uk
University of Colorado	Alan W. Weimer	Dept. of Chemical Engineering Engineering Center ECCH 118 Campus Box 424 Boulder, CO 80309-0424	303-492-3759	alan.weimer@colorado.edu
University of Dayton	Daniel Eylon	Graduate Materials Engineering 300 College Park Dayton OH 45469-0240	(937) 229-2551	eylon@udayton.edu

University of Idaho	Prof. F. H. (Sam) Froes	Institute for Materials and Advanced Processes Mines Building, Room 321 Moscow, ID 83844-3026	208-885-7989	imap@uidaho.edu
University of Tokyo	Toru H. Okabe	Institute of Industrial Science, Room Fw301, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan	81-3-5452-6312	okabe@iis.u-tokyo.ac.jp
University of Virginia	Prof. Phillip A. Parrish	Materials Sci. & Engineering Thornton Hall, B120 P. O. Box 400745 Charlottesville, VA 22904-4745	434-924-1087	Pap4n@virginia.edu
US Air Force Materials Lab	Rollie Dutton Pat Martin Daniel Evans Jaime Tiley	AFRL/MLLM, Bldg 655 2230 Tenth St, Suite 1 Wright-Patterson AFB, OH 45433- 7817	937-255-9834 937-255-1353 937-255-9838 937-255-9834	rollie.dutton@wpafb.af.mil Patrick.martin@wpafb.af.mil Daniel.evans@wpafb.af.mil Jaime.tiley@wpafb.af.mil
US Army ARDEC	Stephen Luchowski	AMSTA-AR-WEA Bldg. 3150 Picatinny Arsenal, NJ 07806	973-724-3373	stephenl@pica.army.mil
US Army TACOM-ARDEC	Brij Roopchand	FCS PM Office Building 171 Picatinny Arsenal, NJ 07806	973-724-7673	roopchan@pica.army.mil
US Army Research Lab	William de Rosset - Dir. ARL Walter Roy	Attn: AMSRL-WM-MD 4600 Deer Creek Loop APG, MD 21005	410-306-0816 410-306-0803	derosset@arl.army.mil wroy@arl.army.mil
US Army Research Lab	Dr. Joe Wells	AMSRL-WM-MC Bldg 4600/MS N208 APG, MD 21005-5069 Aberdeen, MD	410-306-0752	jwells@arl.army.mil
USATACOM	Don Ostberg, MS-255 Jamie Florence, MS-232 Scott Hodges, MS-257 Chip Filar, MS-256 Lisa French	AMSTA-TR-D 6501 E. 11 Mile Rd. Warren, MI 48397-5000	586-574-8718 586-574-5755 586-574-5121	OstbergD@tacom.army.mil florencej@tacom.army.mil hodgess@tacom.army.mil filarc@tacom.army.mil prokural@taacom.army.mil
US DARPA	Dr. Leo Christodoulou	DARPA/DSO 3701 N. Fairfax Dr. Arlington, VA 22203-1714	703-696-2374	lchristodoulou@darpa.mil

US Dept. of Energy	Robert S. Kirk, EE-2G	1000 Independence Ave., S.W.	202-586-8055	Robert.kirk@ee.doe.gov
1 07	Thomas J. Gross, EE-11	Washington, DC 20585	202-586-8027	Tom.gross@ee.doe.gov
	Joseph A. Carpenter, EE-2G		202-586-1022	Joseph.carpenter@ee.doe.gov
	Sidney Diamond, EE-2G		202-586-8032	Sid.diamond@ee.doe.gov
	James J. Eberhardt, EE-2G		202-586-9827	James.eberhardt@ee.doe.gov
	Pat Flaherty, EE-2G		202-586-6794	PAFlaherty@aol.com
	Rogelio Sullivan, EE-2G		202-586-8042	Rogelio.Sullivan@ee.doe.gov
	Kenneth C. Howden, EE-2G		202-586-3631	Ken.howden@ee.doe.gov
	Gurpreet Singh, EE-2G		202-586-2333	Gurpreet.singh@ee.doe.gov
US Dept. of Transportation	Bob Clark	400 7 th Street, NW	202-366-6167	
1 I		Washington, DC 20590		
US Geological Survey	Joseph Gambogi	983 National Center	703-648-7718	jgambogi@usgs.gov
		Reston, VA 20192		
US Marine Corps.	Subra Bettadapur	USMC-DRPMAAA	703-492-3360	BettadapurS@aaav.usmc.mil
•		14041 Worth Ave.; Rm. 126		-
		Woodbridge, VA 22192		
US National Aeronautics and	Dennis L. Dicus	Mail Stop 188A	757-864-3137	
Space Administration		2 West Reid Street		
		NASA Langley Res. Center		
		Hampton, VA 23681-2199		
US Naval Sea Systems Command	William A. Palko	NSWC Carderock Division	301-227-4968	palkoWA@nswccd.navy.mil
·		9500 MacArthur Blvd.		-
		West Bethesda, MD 20817		
US Naval Surface Warfare Center	Bill Messick	NSWC Carderock Division	301-227-4811	messickwt@nswccd.navy.mil
		9500 MacArthur Blvd.		
		West Bethesda, MD 20817		
Valtimet, Inc.	Wendy McGowan	5501 Air Park Blvd.	423-585-4235	Wendy.McGowan@valtimet.com
		Morristown, TN 37813		
Vartech, Inc.	Jay Myrick	748 Greenwood Ave.	312-526-1619	jaymyrick@aol.com
		Glencoe, IL 60022		
Vartech, Inc.	Dominick Varcalle	2300 N. Yellowstone		
		Idaho Falls, ID 83401		
Ventana Research	John Lombardy	831 N. Camino Miramonte	520-325-0440	ventanaresearch@msn.com
		Tucson, AZ 85716		
VES Incorporated	Al Lesesky	P.O. Box 10880	803-366-7170	
-	-	Rock Hill, SC 29731		_
Visteon Automotive Systems	Nick Gianaris	6100 Mercury Drive SW61-020	313 755-4706	
2		Dearborn, MI 48126		

Volkswagen AG	Horst Friedrich	Brieffach 1777	49-5361-92 58 58	Horst.friedrich@volkswagen.de
		D-38436 Wolfsburg		
		Germany		
Volvo Trucks North America	Greg Gentle	TC1/35	336-393-3058	Greg.gentle@volvo.com
	Stefan Jansson	P.O. Box 26115	336-393-3622	Stefan.b.jansson@volvo.com
	Skip Yeakel	Greensboro, NC 27402-6115	336-393-2825	Skip.yeakel@volvo.com
Wabash National	Rod Ehrlich	PO Box 6129	765-771-5300	rod.ehrlich@wabashnational.com
(also Fruehauf) (trailers)	Frank Smidler	Lafayette, IN 47903	765-771-5440	fsmidler@wabashnational.com
West Virginia University	Jacky Prucz	Mechanical & Aerospace Dept	304-293-3111	jcprucz@mail.wvu.edu
		P.O Box 6106	ext. 2314	
		Morgantown, WV 26506-6106		
West Virginia University	Samir Shoukry	517 Engineering Sciences Bldg.	304-293-3111	
		Morgantown, WV 26505	Ext. 2367	Samir.Shoukry@mail.wvu.edu
XTRA Lease	John Sullivan	XTRA Lease	314-579-9300	
		1801 Park 270 Drive		
		Suite 400		
		St. Louis, MO 63146		
Zoltek	Phillip Johnson	3594 Vineyard Springs Court	248-276-2418	PJohn10007@aol.com
		Rochester Hills, MI 48306		