Section 2 Non-ferrous Metal Industry

Process Flow

- 2-1 Aluminum
- 2-1 Copper

Non-ferrous (Aluminum): Production Process and Energy Saving Technology

Non-ferrous (Copper): Production Process and Energy Saving Technology

Data Sheets

- 2-1 Aluminum
- 2-1 Copper

NA-ME-1		Energ	y Conservat	tion Director	ry			
ndustry Classific Non-ferrous: Alur Technology Clas Machinery & Equ	minum ssification]	lmm	[Energy Source] Heavy-oil and Gas [Practical Use]					
Outline		hich heats, melts, ar	nd hold non-ferrou	s metals such as m	netal zinc, tin, and	aluminum by immers-		
& Mechanism	A conventional furnace indirectly heat the metal in a vessel made of steel from outside through the vessel bottom or side wall. An immersion melting furnace is an energy-saving-type furnace which heats directly the metal with a combustion-heating immersion tube. The furnace has a combustion-heating immersion tube integrated with a special gas burner made of ceramic, a temperature sensor, and specially-designed furnace-temperature control device.							
[Description] Structure explanation, Shape and/or System diagram	ure tion, nd/or m							
			Heavy-oil-firing iron-ladle furnace	Gas-firing immersion furnace	Reduction rate (%)			
		Specific melting energy consumption (kcal/kg)	2,500	700	72			
		Specific holding energy consumption (Kcal/h)	62,000	22,000	65			
		Variation of molten metal temperature during melting (° C)	-25 to +25	-5 to -5	80			
Energy saving effect	216.7 yen/h The annual	to 80 yen/h.	550 thousand yen a	assuming the prod		energy is reduced from kg/h, daily operation of		
[Economy] Equipment cost	Improveme Investment	amount: 5 million nt effect: 200 million payback: 2 - 3 year	on yen/year rs					
Remarks	Heavy-oil 9 13A 11000		ty 0.9 kg/L 26 ye 40 ye	n/m ²				
[Example sites]	mple sites] [References] [Inquiry]							

NA-ME-2		Energy Conservation	on Directo	ory	
Industry Classifi	_	L. C. W. C. C. C. annuall con-	22 - Jackson La		[Energy Source]
Non-ferrous: Alu		Installation of a small capa	_		Electricity
[Technology Cla Machinery & Eq	uipment	keeping hydraulic pressure			[Practical Use]
Outline	Even when properated in contractions	n, the main pump of amp is installed to c	f the hydraulic unit was compensate leaks.		
Principle & Mechanism	oil is not nee	acity variable pump to compensate leaks eded for the pressure-oil system, the m rated to compensates leaks. Instead, a s	ain pump is sto	opped and only the	small-capacity variable
	Before	Improvement		After Im	provement
	(a) Relie	Pressure SW Accumulator Accumulator Accumulator Unload vs ef control (b) Unload control		Accumulator	3. 7kW Unload valve
[Description]		Fig. 1		Fig.	. 2
Structure explanation, Shape and/or System diagram	(a) Relief control (b) Unload control	Electric power at unload valve OFF Description of the me at unload	Power consumption main-pump (ut FF	
		Fig. 3		Fig. 4	Improved section
Energy saving effect		amp operation requires 11 kW of electric equires only 3.7 kW.	power at minir	mum. In contrast, th	e small-capacity pump
[Economy]	Ttmont	50 60 111 110			
Equipment cost	Improvemen	amount: 50 - 60 million yen nt effect: 60 million yen/year payback: 1 year			
Remarks					
[Example sites]	1	[References]		[Inquiry]	
[2:::::::::::::::::::::::::::::::::::::	ı	[reconstruct]			O / ECCJ (JIEC)

Energy Conservation Directory NA-ME-3 Industry Classification] [Energy Source] VVVF control of pumps and fume blowers, and flow Non-ferrous: Aluminum Electricity [Practical Use] [Technology Classification] rate reduction of by-pass circuit Machinery & Equipment 1981 In a rolling schedule, the time ratio between the rolling operation and the set-up operation is 3:2. The conventional method was as follows; 1) Coolant pumps and fume blowers were operated continuously. 2) During the set-up, output of the coolant pumps was returned to the coolant tank through the bypass by switching the 3-way valve. However, power consumption in the set-up time was greater than that in the Outline rolling operation. The following measures were taken: 1) The numbers of revolutions of the coolant pumps and fume blowers are controlled in accordance with the rolling schedule by introducing the VVVF apparatus. 2) Power consumption by the coolant pumps during the set-up time is reduced by throttling the valve of the bypass circuit to the coolant pumps. [Description] Improved section Structure explanation, Shape and/or System Coolant pump: A pump for spraying coolant oil during aluminum rolling for the purpose of lubricating and diagram cooling, etc. of the surface of the plate. Fume exhaust blower: A blower for exhausting fume which fills the surroundings when coolant is sprayed. 3-way switching valve: A valve which switches coolant flow and returns it to the coolant tank through the bypass during the non-rolling time such as coil handling. **Energy saving** 1) Reduction of power consumption by VVVF control: 2,098,000 kW/year 2) Reduction of power consumption by throttling the bypass valve: 1,118,000 kW/year effect [Economy] Investment amount: 80 - 90 million yen Improvement effect: 50 - 60 million yen/year Equipment Investment payback: 1.5 - 2 years cost Remarks [Example sites] [Inquiry] [References]

NEDO / ECCJ (JIEC)

In-house Material of Sumitomo Light Metal Indus-

tries, Ltd.

Sumitomo Light Metal Indus-

tries, Ltd.

NA-ME-4		Energy C	onservation	Directory				
Industry Classif Non-ferrous: Alu	-	Improvement of thermal efficiency for rapid			_	Energy Source] Fuel		
Technology Cla Machinery & Eq	-	alu	minum meltin	g furnace	1 -	Practical Use] 1984~		
Outline	of the melti of unit requested burner com	in this article are various ng furnace used for meltinirement of energy has bustion control through c of the recuperator.	ng aluminum ingo been achieved thr	t and return materials. A ough such measures as	pproxima mixing o	ately 30% reduction of molten metal, and		
Principle & Mechanism	upper pa control v 2) Although	 In general, there is a temperature difference of 40 - 60 °C between the temperature of the melting metal at the upper part in the melting furnace and that at the lower part; due to this reason, appropriate combustion control was not possible so far by the temperature control of the melting metal. Although recovery of waste gas from the furnace was conducted by the exhaust heat boiler, waste heat recovery could not be made sufficiently, being affected by the load in accordance with the utilization of the steam. 						
[Description] Structure explanation, Shape and/or System diagram	Temperading an inelectromarials has 2) Introduct Through the furna 3) Recovery Was much recovery 4) Setting of Because at any are	Introduction of electromagnetic induction type mixing machine (Refer to Figure 1.) Temperature difference between the upper and lower parts of the melting metal has been settled by embedding an inductor on the bottom of the furnace, and setting a mixing machine which is an application of the electromagnetic induction of the linear motor. At the same time, time required for melting aluminum materials has been reduced by approximately 6 %. 2) Introduction of a controller for melting metal temperature and furnace temperature (Refer to Figure 2). Through controlling the combustion burner by the temperature of the melting metal and damper control by the furnace pressure, approximately 10% of unit requirement of fuel has been achieved. Recovery of exhaust heat being as high as 900 °C was made by the exhaust heat boiler previously, but as it was much affected by the load depending on the use of steam, it has been changed, and improved, to heat recovery by using the recuperator. Setting of a tilting type high-speed burner Because of the capability of freely changing the direction of the flame, the flame can be targeted intensively at any area of unmelted metal, thereby reducing the time required for melting metal by approximately 20%. Improved section Improved section						
Energy saving	comparison	the effect of energy savi with the consumption be n of crude oil. Table 1 E	fore the improven		L/year wh			
effect		Energy unit requirement Yield (metal loss)	Conventional iron melting furnace 50 kcal/kg (100%) 7 kg/T (100%)	After improvement (immers type holding furnace 22 kcal/kg (44%) 2 kg/t (29%)	27	Effect kcal/kg 5 kg/T		
[Economy] Equipment cost Remarks	Improveme	amount: 60 million yen nt effect: 40 million yen/ payback: 1.5 years	year					
[Example sites]	1	[References]		I	[Inquiry]			
		-				\ POOL (WEG)		
Similar improver	nent cases exi	st. "Collection of Energ	y Conservation C	ases 1985," p.1,351	NEDO) / ECCJ (JIEC)		

Energy Conservation Directory NA-ME-5 Industry Classification] [Energy Source] Regenerative burner type aluminum melting Non-ferrous: Aluminum Fuel [Practical Use] [Technology Classification] furnace around 1995 Machinery & Equipment This improvement is to use a highly efficient furnace for melting aluminum, which employs oil or gas firing Outline regerative burners and reduces the specific fuel consumption by more than 30% compared with a conventional melting furnace. 1) The regerative burner is of a high-speed jet (high-momentum) type which incorporates both 2-step combus-Principle tion and combustion gas self circulation. 2) The principle of the regerative burner is that it has a regenerative (heat-storing) section in it, and the furnace gas and the combustion air flow through it alternately in a cycle of several tens of seconds, effectively Mechanism transferring the heat of the high-temperature exhaust gas to the combustion air. (For further detail, see IS-1) The structure of the regerative-burner-type aluminum melting furnace is shown in Fig. 1. 2) Fig. 2 is an example of the furnace temperature and the combustion air temperature. [Description] (°C) 1300 Structure 1100 explanation, Shape and/or 900 System 700 diagram 500 8 minutes 16 minutes 24 minutes Fig. 2 Furnace temperature and combustion Fig. 1 Regerative-burner-type aluminum melting furnace air temperature Table 1 An example of the energy saving effect of regenerative-burner-type aluminum melting furnaces Conventional melting Regenerative melting Effect furnace furnace Waste heat recovery Regenerative substance Recuperator method (alumina ball) Combustion air 200° C on average 800° C on average temperature Air ratio 1.2 on average 1.1 on average 15.1 % 68.2 % Waste heat recovery ratio Specific fuel 682 x 103 kcal/t 478 x 103 kcal/t 204 x 10³ kcal/t (30% reduced) Energy saving consumption Heat efficiency 40.2 % 57.5 % effect Reduction in crude oil 1,058.6 kL/year equivalent Operating condition of furnace: 40 t/ch, 4 ch/day, 300 day/year [Economy] Investment amount: 70 yen Equipment Improvement effect: 20 - 25 yen/year Investment payback: 3 - 5 years cost Remarks [Example sites] [References] [Inquiry] NEDO (JIEC) Adoption is increasing. "Industrial Heating (Vol. 35, No. 4, 1997)"

Energy Conservation Directory NA-OM-1 Industry Classification] [Energy Source] Operation method by reduced number of Non-ferrous: Aluminum Electricity [Practical Use] [Technology Classification] revolutions of circulating fan 1982 Operation & Management A circulating fan of a soaking pit was constantly operated at 100% of the number of revolutions from the start to Outline the end of the operation. Energy saving is realized by the improvement of operation, where the number of revolutions of the circulating fan is reduced. Following two points are found by controlling the number of revolutions of the circulating fan. Principle 1) Reducing the number of revolutions of the circulating fan for a few hours after the start of heating does not change the heating time. Reducing the number of revolutions of the circulating fan after the end of soaking gives no effects on Mechanism material temperature. ₹ Furnace bodyTemperature Improved section [Description] Fig. 1 Structure of Circulating fan Structure explanation, 100 Shape and/or 75 System diagram Soaking of all zone Before improvement After improvement Timing RC fan RC fan Electricty Electricity Number of revolution Number of revolution 70 kW 35 kW Start 100% 76% Soaking of all zone 100% 56kW 76% 28 kW after two hours Same as before Others 70 ~ 56 kW 100% improvement Fig. 2 Reduction of revolution number **Energy saving** From start to 3 hours: 70 kW to 35 kW After end of soaking: 56 kW to 28 kW effect [Economy] Investment amount: 70 million ven Improvement effect: 5 million yen/year Equipment Investment payback: 1 - 2 years cost Reduction of the number of revolutions is also applicable to a heating furnace and softening furnace. The most suitable methods shall be selected depending on applications (change of a pulley diameter, adoption Remarks of a small-capacity and slow-speed motor, adoption of VVVF control, etc.) [Example sites] [References] [Inquiry] In-house material of Sumitomo Light NEDO / ECCJ (JIEC) Sumitomo Light Metal Industries, Ltd. Metal Industries, Ltd.

NA-OM-2		Ener	gy Conservatior	n Directo	ry		
Industry Classif Non-ferrous: Alu	- 1	Heat loss				Energy Source]	
[Technology Cla Operation & Ma	- 1		urnace			Practical Use]	
Outline	This is an ex	ectric holding furnaces used near the casting machine although individual energy consumption is not large, it g furnaces that have been already installed.					
	[Before impr	ovement] (Fig. 1)		[After improvement] (Fig. 2)			
[Description] Structure	As the fur tures a lar mal condu When bail cess, therr was no co	 As the basic material for the furnace body, ceramic lining material has been selected for its high insulation property. Materials of good durability have been attained to stand change of temperature inside the furnace and accommodation of melted metal. The inside of the furnace has been divided into 4 chambers: i.e. chamber for feeding melted metal, heating chamber, bailing-out chamber, and control chamber for managing temperature of melted Al. Each chamber is provided with an independent lid and size of openings are kept to a minimum. The heater has a special structure provided with a special radiant type heater built in the lid. As a result, a large energy saving has become possible by reducing the electrical power of the furnace from previous 60 kW to 12 kW. 					
explanation, Shape and/or System diagram	Cast iron melting pot Refractory material brick Fig. 1 Strumetal holding	Melting AI	out area Heater (60 kW) ional type of melting	Radiation type heater (12 kW) Bailing out port Ceramic Ceramic Fig. 2 Construction of the melting metal holding furnace after improvement			
	metarnolum	grumace		rumace and	si iiipiove	Sillerit	
		Table 1	Energy saving of melting	ng pot holding	g furnace		
Energy saving		Electic	Before Improvement	After Improve	ment	Effect	
effect	c	Electricity consumption amount Crude oil saving amount rate	156,000 kWh/y	42,000 kWł	n/y	114,000 kWh/y 28 kL/y	
			I				
[Economy] Equipment cost	Improvemen	amount: 5 million at effect: 2 million bayback: 3 years	yen/year				
Remarks							
[Example sites]		[References]			[Inquiry]		
There are many amples execute			Collection of Improvement Cases at Excellent Energy Management Plants (1985) NEDO / ECCJ (JIEC)				

Energy Conservation Directory NA-OM-3 Industry Classification] [Energy Source] Improvement of operation of hot air circulation fan Non-ferrous: Aluminum Electricity [Practical Use] [Technology Classification] for the aluminum annealing furnace around 1980 Opearation & Management Introduced here is an example of remodeling the operation pattern of the hot air circulation fan of an anneal-Outline ing furnace for aluminum coil heat treatment to contribute to energy saving. As shown in Fig. 1, the coil annealing furnace is a batch type RC fan **3 ø 40 kW 6** sets electric furnace. 2) Without replacing the existing motor, a frequency converter has been installed in the control board of the fan motor. Principle & Mechanism ■3 & 400 V Improved section ■ 10 ~ 50Hz Electricity 3 Ø 400 V 50Hz Before improvement After improvement The furnace fan was under a rated high-speed It has been reprogrammed so that the fan is operated at rated high-speed during temperature rises until the preoperation both during a temperature increase and during soaking. set level, and during soaking period, at a reduced rpm of 1/5 of the rating. [Description] Improved section Coil temperature (°C) Structure kWh 350°C explanation, Temperature Shape and/or kW System 237 237 diagram Temperature Bailing ou Soaking Fig. 3 Characteristic curve of the annealing furnace Fig. 2 Characteristic curve of the annealing furnace (After improvement) (Before improvement) Table 1 Energy saving effect After improvement Before improvement Effect Production volume 29.568 t/v 29,616 t/v **Energy saving** Electrc power 1,502,904 kWh/y 1,284,400 kWh/y 218,504 kWh/y reduced consumption effect Electric power unit 50.8 kWh/t 43.4 kWh/t 7.4 kWh/y reduced requirement Reduction converted 53 kL/y into crude oil [Economy] Investment amount: 6 million yen Improvement effect: 4 million yen/year Equipment Investment payback: 1.5 years cost Remarks [References] [Example sites] [Inquiry] Collection of Improvement Cases at Excellent Energy Management

National Committee for Effective Use of Electricity

NEDO / ECCJ (JIEC)

MItsubishi Aluminum Inc

Fuji Plant

Plants (1984),

Energy Conservation Directory NC-ME-1 Industry Classification] [Energy Source] Efficiency improvement in autogenous furnace in Non-ferrous: Copper Fuel, Electricity [Practical Use] [Technology Classification] copper smelting process Machinery & Equipment The fuel consumption in the copper smelting process occupies 50 % of thewhole factory. This improvement is an example of the saving energy by the development of the burner suitable for the high slag quality Outline operation and highly oxygen enriched blast operation. In the autogenous furnace, the copper concentrate raw material (pulverized sulfide) is blown into the furnace Principle and is burned using the concentrate burners together with the oxygen enriched air for the reaction, the auxiliary fuels such as, heavy oil, and pulverized coal and together with silicate ore. This furnace is the saving energy type which can save the auxiliary fuel, since this method can utilize the maximum oxidation reaction heat when Mechanism the sulfur and iron in the copper concentrate burn. [Measures against prevention of furnace bottom build-up] The build-up is defined as the precipitation of the magnetite (Fe₃O₄) on the bottom of the autogenous furnace during the high slag quality operation. The build-up reduces the furnace inner volume, and increases the furnace operation troubles. It is necessary to prevent the build-up configuration. 1. Flue dust 2. Pulverized coal 3. Compressed air 4. Mixer 5. Lance pipe 6. Settler ceiling part [Description] Fig.1 The conceptual figure on the settler injection facilities of the autogenous furnace [Development of the burner suitable for the Structure Table 1 The heat balance of the autogenous furnace oxygen highly enriched blast operation] explanation, [Input of heat] (McaL/H) (%) Oil burner 1 Shape and/or Reaction heat 41.049 78.3 Oxygen 2 (90%) Raw Melting heat of the flue dust -4,543 -8.7 System Heat from the charged ore 1,092 2.1 diagram 9.7 Heat from the reaction air 5,099 Oxygen enriched air Combustion heat of the 9,762 18.6 heavy oil and pulverized 52,459 Total 100.0 [Output of heat] 41.7 Retaining heat of the smelting 21.880 furnace body Dispersion 8 9 Burner Retaining heat of the waste gas 21,614 41.2 Retaining heat of the flue dust 1,895 3.6 Radiation heat 10.3 5,400 cone 1,670 3.2 Others 52,459 Total Fig.2 Conceptual figure of the concentrate burner

Energy saving effect	The consumption amount of the auxiliary fuel is reduced down to about 50% by the substantial increase of the reaction heat due to the effect of the high slag quality operation							
[Economy]	Investment amount: 4 million yen							
Equipment		Improvement effect: 15 million yen/year						
cost	Investment payback: 0.3 yea	Investment payback: 0.3 year						
Remarks								
[Example sites]		[References]	[Inquiry]					
There are many similar examples executed.		Collection of Improvement Cases at Excellent Energy Management Plants (1988) p.81	NEDO / ECCJ (JIEC)					

Energy Conservation Directory NC-ME-2 Industry Classification] [Energy Source] Non-ferrous: Copper Fuel Waste heat recovery of copper smelting shaft [Practical Use] [Technology Classification] furnace using heat pipes Machinery & Equipment This improvement is an example of the waste heat recovery by introducing rotary type heat pipe heat ex-Outline changer (abbreviated to R.H.P after this) in order to increase the heat efficiency of the shaft furnace in the copper wire rough drawing production process. The structure of the rotary type heat pipe heat exchanger (R.H.P)] (Refer to Fig.1) Steam generating drum Principle consumption facilities ո[′] Water Separation Mechanism sprinkling device of the Pump steam and water Improved section Fig.1 Outline diagram of the R.H.P and system flow 1) The heat efficiency of the furnace was about 60 %, the loss of the furnace top waste gas was about 14%, and the average temperature of the waste gas was 220 °C before the improvement. 2) Fig.2 shows schematic illustration of the shaft furnace, and Fig.3 shows the flow of the waste heat recovery. 3) The amount of the energy recovery was about 370,000 kcal/h, and the heat efficiency of the shaft furnace was improved about 7.5% up to 67.5% (Waste gas from top of furnace) Waste gas from top of furnace (Waste combustion gas + Flue passage [Description] outside air flos) Raw materials Duct Structure 5,000~15,000m³, h 20~40°C explanation, Waste combustion gas 5,000~9,000m2 h Shape and/or pump 3 $=350\sim600^{\circ}C$ System diagram Control board Taphole waste gas 1~7 Improved section Fig. 2 Schematic illustration of separation device of the Fig.3 The flow of the waste heat recovery steam shaft furnace Table 1 Energy saving effects by the waste heat recovery of a shaft furnace (Operation time: 7000h/year) Before improvement After improvement Effect Heat efficiency of the **Energy saving** 60% 67.5% 7.5 improvement shaft furnace effect Amount of waste heat 570,000 kcal/h 570,000 kcal/h recovery Reduction amount of 431 kL/year crude oil equivalent [Economy] Investment amount: 50 million yen Improvement effect: 20 million yen/year Equipment Investment payback: 2.5 years cost Remarks [Example sites] [References] [Inquiry] The Furukawa Electric Co. Ltd. Mie Factory Energy Saving Journal (Vol. 39, No. 7, 1987) p.37 NEDO / ECCJ (JIEC)

NC-OM-1			Energy Co	nserva	ition D	irectory			
Industry Classifi	cation]] [Energy	/ Source]
Non-ferrous: Co	pper	Energy saving in copper electrolysis process				E	lectricit	y, Fuel (Steam)	
Technology Cla	ssification	E	nergy saving	ın copp	er elect	rolysis proces	s h	Practic	al Use]
Operation & Mar	- 1							1993	•
Outline	Anodes madelectrolysis solution in t	process. A	An example of th	ne electric cess and o	energy sa	o the electrolytic c ving by reducing the ction of the steam	he resistan	ce of the	e electrolytic
Principle & Mechanism	Energy constank] The electric process (Fig. consumed in sumed as the electrolytic about 60% of tank. The steam is perature of the steam is perature of the steam is the steam is perature of the steam is the steam is perature of the steam is perature of the steam is the steam is perature of the steam is perature of the steam is perature of the steam is the steam is perature of the steam is the steam is perature of the steam is the s	power use power use 1) is main the electre Joule's h solution. To f the ener consumed he electro	tructure in the ed in the copper ed ly composed of colysis, and the eneat by the resista This Joule's hear gy used in the ed ly so as to maintainly the copper electric tructure.	lectrolysis lectrolysis the energy nergy con- unce of the t occupies lectrolysis in the tem- 62 °C.		Joule's heat Piping Tank R:	Rectifie	AC el power	n
	[Measures to	reduce th	ne electric power	:1					
[Description]	thickness tank are of reduction ing distant solution of 2)The relation	of anodes decided, the of the ele- nce is short drops. on between	s. Since the distance can ctric power constrened, and the entered the electric vol. (V) = {Distance	be reduced umption ca electric vol	een the poll by increan be obtain tage general and distant	nethods such as the sition of the anode asing the thickness and to such an extrated by the electronces between anode and cathode (e and catho s of the and ent thatthe ric resistance e and catho (0.1cm)} / {	de in thodes. As electric ce of the	e electrolysis s a result, the current flow- e electrolytic
0		of electrolytic solution (0.7S/cm)} x {electric current density (0.026A/cm²) }= 0.004 V According to the formula above, electric voltage drops of 4 mV correspond to the reduction of the distance of							
Structure						1.5%, since the e			
explanation,	mV.	,				•	Θ		
Shape and/or					i				
System diagram	Fig	apour Pour	Electric current 33mm	Cathode	Electroc current	Electric current Joule's head the courrent of the current of the	at -		proved section
						ectrolysis tank (Pro			
	IUDIO I LIIGI	gy saving	- Choole of Improv						, , , , , , , , , , , , , , , , , , ,
		***	. C. 1	Before imp	rovement	After improvement	Effec	t	
Energy saving			cost for electric sed in electrolysis	264 k	Wh/t	258 kWh/t	6 kWh/t red	cuction	
effect		_	ction amount of	19,05	6 t/v	9,660 t/y	9,396 t/y re	duction	
		D. J. C.	steam	19,03	o u y	7,000 t/y	2,330 U y 1e	auctiOII	
			n amount of crude l equivalent						
[Eggs grave]			1				<u> </u>		
[Economy] Equipment cost	Investment Improvement Investment	nt effect:	31 million yen/y	ear					
Remarks									
[Example sites]			[References]				[Inqui	ry]	
Nikko Kinzoku Smelting Factory	Co. Ltd, Sa	ganoseki	"Collection of E	nergy Con	servation	Cases 1995," p.999			CCJ (JIEC)